function model = SMOforSVM(X, y, C )
%sequential minimal optimization,SMO tol = 0.001; maxIters = 3000; global i1 i2 K Alpha M1 m1 w b [m, n] = size(X); K = (X*X'); Alpha = zeros(m,1); w = 0; b = 0;
flag =1;iters = 1;
while flag >0 & iters < maxIters
[i1,i2,m1,M1] = selectWorkSet(y, C);
if m1 - M1 <= tol
break;
end
solveOptimization(X, y, C)
iters = iters +1;
end model.alpha = Alpha; id = find(Alpha < C & Alpha >0);
% b = mean(y(id)' - (y.*Alpha)'*K(:, id)); id = id(1);
b = y(id)' - (y.*Alpha)'*K(:, id); w= (y.*Alpha)'* X;
model.w = w;
model.b = b;
end %Selecting working set B
function [i1,i2,m1,M1]=selectWorkSet(y, C)
global K Alpha I_up =find ((Alpha < C & y == 1) | (Alpha > 0 & y == -1));
I_low = find( (Alpha < C & y == -1) | (Alpha > 0 & y == 1));
yGradient = - y.* (((y * y').* K) * Alpha - 1); [m1 , i1] = max(yGradient(I_up));
[M1 , i2] = min(yGradient(I_low)); i1 = I_up (i1);
i2 = I_low(i2); end %Solving the two-variables optimization problem
function solveOptimization(X, y, C)
global Alpha K i1 i2 E
alpha1_old = Alpha(i1);
alpha2_old = Alpha(i2);
y1 = y(i1);
y2 = y(i2); % x1 = X(i1,:)';
% x2 = X(i2,:)';
beta11 = K(i1,i1); beta22 = K(i2,i2); beta12 = K(i1,i2);
id =[1: length(Alpha)];
id([i1 i2]) = [];
beta1 = sum( y(id).*Alpha(id).*K(id,i1));
beta2 = sum( y(id).*Alpha(id).*K(id,i2)); E = beta1 - beta2 + alpha1_old * y1 * (beta11 - beta12) +alpha2_old*y2 * (beta12 - beta22) - y1 + y2;
kk = beta11 + beta22 - 2 * beta12;
alpha2_new_unc = alpha2_old + (y2 * E)/kk; if y1 ~= y2
L = max([0 , alpha2_old - alpha1_old]);
H = min([C, C - alpha1_old + alpha2_old]);
else
L = max([0 , alpha1_old + alpha2_old - C]);
H = min([C, alpha1_old + alpha2_old]);
end if alpha2_new_unc > H
alpha2_new = H;
elseif alpha2_new_unc < L
alpha2_new = L;
else
alpha2_new = alpha2_new_unc ;
end alpha1_new = alpha1_old + y1 * y2 * (alpha2_old - alpha2_new); Alpha(i1) = alpha1_new;
Alpha(i2) = alpha2_new; % for i=1:length(E)
% E(i) = sum(y .* Alphas .* K(i,:)) - b - y(i);
% end
%
%
% E1 = E(i1);
% E2 = E(i2);
%
% b1 = E1 + y1 * (a1 - alph1) * K(i1,i1) + y2 * (a2 - alph2) * K(i1,i2) - b;
% b2 = E2 + y1 * (a1 - alph1) * K(i1,i2) + y2 * (a2 - alph2) * K(i2,i2) - b;
%
% if b1 == b2
% b = b1;
% else
% b = mean([b1 b2]);
% end % w = w - y1 * (alpha1_new -alpha1_old) * X(i1,:)' - y2 * (alpha2_new -alpha2_old) * X(i2,:)'; end

  

clear
X = []; Y=[];
figure;
% Initialize training data to empty; will get points from user
% Obtain points froom the user:
trainPoints=X;
trainLabels=Y;
clf;
axis([-5 5 -5 5]);
if isempty(trainPoints)
% Define the symbols and colors we'll use in the plots later
symbols = {'o','x'};
classvals = [-1 1];
trainLabels=[];
hold on; % Allow for overwriting existing plots
xlim([-5 5]); ylim([-5 5]); for c = 1:2
title(sprintf('Click to create points from class %d. Press enter when finished.', c));
[x, y] = getpts; plot(x,y,symbols{c},'LineWidth', 2, 'Color', 'black'); % Grow the data and label matrices
trainPoints = vertcat(trainPoints, [x y]);
trainLabels = vertcat(trainLabels, repmat(classvals(c), numel(x), 1));
end end C = 10;
par = SMOforSVM(trainPoints, trainLabels , C );
p=length(par.b); m=size(trainPoints,2);
if m==2
% for i=1:p
% plot(X(lc(i)-l(i)+1:lc(i),1),X(lc(i)-l(i)+1:lc(i),2),'bo')
% hold on
% end
k = -par.w(1)/par.w(2);
b0 = - par.b/par.w(2);
bdown=(-par.b-1)/par.w(2);
bup=(-par.b+1)/par.w(2);
for i=1:p
hold on
h = refline(k,b0(i));
set(h, 'Color', 'r')
hdown=refline(k,bdown(i));
set(hdown, 'Color', 'b')
hup=refline(k,bup(i));
set(hup, 'Color', 'b')
end
end
xlim([-5 5]); ylim([-5 5]);

以上代码结果写的比较粗糙,可能不稳定,我重新贴了一个新的代码:

http://www.cnblogs.com/huadongw/p/4994657.html

sequential minimal optimization,SMO for SVM, (MATLAB code)的更多相关文章

  1. Sequential Minimal Optimization (SMO) 算法

    SVM 最终关于 $a$ 目标函数为凸优化问题,该问题具有全局最优解,许多最优化算法都可以解决该问题,但当样本容量相对很大时,通常采用 SMO 算法(比如 LIBSVM),该算法为启发式算法,考虑在约 ...

  2. 支持向量机的smo算法(MATLAB code)

    建立smo.m % function [alpha,bias] = smo(X, y, C, tol) function model = smo(X, y, C, tol) % SMO: SMO al ...

  3. SMO优化算法(Sequential minimal optimization)

    原文:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html SMO算法由Microsoft Research的John C. ...

  4. Jordan Lecture Note-8: The Sequential Minimal Optimization Algorithm (SMO).

    The Sequential Minimal Optimization Algorithm (SMO) 本文主要介绍用于解决SVM对偶模型的算法,它于1998年由John Platt在论文“Seque ...

  5. Support Vector Machine (2) : Sequential Minimal Optimization

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  6. Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines 论文研读

    摘要 本文提出了一种用于训练支持向量机的新算法:序列最小优化算法(SMO).训练支持向量机需要解决非常大的二 次规划(QP)优化问题.SMO 将这个大的 QP 问题分解为一系列最小的 QP 问题.这些 ...

  7. Sequential Minimal Optimization(SMO,序列最小优化算法)初探

    什么是SVM SVM是Support Vector Machine(支持向量机)的英文缩写,是上世纪九十年代兴起的一种机器学习算法,在目前神经网络大行其道的情况下依然保持着生命力.有人说现在是神经网络 ...

  8. SMO(Sequential Minimal Optimization) 伪代码(注释)

    Algorithm: Simplified SMO 这个版本是简化版的,并没有采用启发式选择,但是比较容易理解. 输入: C: 调和系数 tol: 容差 (tolerance) max passes: ...

  9. 借One-Class-SVM回顾SMO在SVM中的数学推导--记录毕业论文5

    上篇记录了一些决策树算法,这篇是借OC-SVM填回SMO在SVM中的数学推导这个坑. 参考文献: http://research.microsoft.com/pubs/69644/tr-98-14.p ...

随机推荐

  1. ServiceStack.OrmLite 6 学习笔记 查

    查 根据id var result = db.SingleById<Poco>(1); 根据字段 var customer = db.Single<Customer>(new ...

  2. hdu 5927 Auxiliary Set 贪心

    Auxiliary Set Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Pr ...

  3. CSS深入研究:display的恐怖故事解密(2) - table-cell(转)

    http://www.cnblogs.com/StormSpirit/archive/2012/10/24/2736453.html 上集<CSS深入研究:display的恐怖故事解密(1) - ...

  4. Thinkphp 3.2 添加 验证码 如何添加。

    1,在home模块indexController.class.php中,加入以下代码 <?php namespace Home\Controller; use Think\Controller; ...

  5. redis数据库选择-select

    1.关于redis的select命令用法: SELECT index 切换到指定的数据库,数据库索引号 index 用数字值指定,以 0 作为起始索引值. 默认使用 0 号数据库. 可用版本: > ...

  6. c++ ,类型转换

    一.隐式转换 1)精度低转高,sigend转unsigend2)数值0,会转为为指针. 数组名会转换为首地址.3)bool转换 .0为false.其他为true.-1也是true...4)非const ...

  7. MyISAM与InnoDB的索引实现

    1.MyISAM 使用B+Tree 作为索引结构,叶子节点的data存放指针,也就是记录的地址.对于主键索引和辅助索引都是一样的.2.InnoDB 也使用B+Tree作为索引结构,也别需要注意的是,对 ...

  8. 在VNC中Xfce4中Tab键失效的解决方法

    说明 在Ubuntu Server 14.04上安装了xfce4桌面环境,但是却发现在终端中Tab键不能自动补齐(但是Ctrl + I 仍然可以用). 出现这种情况的原因是,由于Tab键的功能被窗口快 ...

  9. JavaWeb学习总结(九)--JDBC入门

    一.什么是JDBC JDBC(Java DataBase Connectivity)就是Java数据库连接,说白了就是用Java语言来操作数据库.原来我们操作数据库是在控制台使用SQL语句来操作数据库 ...

  10. Android Volley和Gson实现网络数据加载

    Android Volley和Gson实现网络数据加载 先看接口 1 升级接口 http://s.meibeike.com/mcloud/ota/cloudService POST请求 参数列表如下 ...