题目链接:https://uva.onlinejudge.org/external/12/1220.pdf

题意: 公司n个人,形成一个数状结构,选出最大独立集,并且看是否是唯一解。

分析:

d(i) 是 节点 i 的最优值, i 只有两种决策,就是选和不选。 转移方程:

d(i) = max {1+Σ1d(j),Σ2d(j)}; Σ1是所有孙子节点,Σ2是所有儿子节点。

那么状态的定义d(i,0),节点 i 不选,d(i,1),节点 i 选。

那么状态转移方程就是:

是否唯一 f(v,0) = 1 表示唯一, f(v,1) = 0 不唯一。

d(u,1) = sum{d(v,0)}(v是u的子节点),当所有 f(v,0) = 1,d(u,1) = 1;

d(u,0) = sum{max(d(v,0),d(v,1))}, if (d(v,0)==d(v,1)) f(u,0) = 0,取的对应的f()==0,f(u,0) = 0;

存树形结构,一个较好的方式用邻接表,每个字符串对应一个ID,可以用map<string,int>dict,有一个较好的函数,dict.count(s),s字符串出现的次数。

#include <bits/stdc++.h>
using namespace std; const int maxn = +;
int cnt;
int n;
vector<int> sons[maxn];
int d[maxn][],f[maxn][]; map<string,int> dict; int ID(const string &s) {
if(!dict.count(s)) dict[s] = cnt++;
return dict[s];
} int dp(int u,int k) {
f[u][k] = ;
d[u][k] = k;
for(int i=;i<sons[u].size();i++) {
int v = sons[u][i];
if(k==) {
d[u][] +=dp(v,);
if(!f[v][]) f[u][] = ;
}
else {
d[u][] +=max(dp(v,),dp(v,));
if(d[v][]==d[v][]) f[u][k] = ;
else if(d[v][]>d[v][]&&!f[v][]) f[u][k] = ;
else if(d[v][]>d[v][]&&!f[v][]) f[u][k] = ;
}
}
return d[u][k];
} int main()
{
string s,s2;
while(cin>>n>>s) {
cnt = ;
dict.clear(); for(int i=;i<n;i++)
sons[i].clear(); ID(s);
for(int i=;i<n-;i++) {
cin>>s>>s2;
sons[ID(s2)].push_back(ID(s));
} printf("%d ",max(dp(,),dp(,)));
bool unique = false;
if(d[][]>d[][]&&f[][]) unique = true;
if(d[][]>d[][]&&f[][]) unique = true;
if(unique) printf("Yes\n");
else printf("No\n"); } return ;
}

Uva 1220,Hali-Bula 的晚会的更多相关文章

  1. UVa 1220 Party at Hali-Bula 晚会

    #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #i ...

  2. POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)

    POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...

  3. UVa 1220 Hali-Bula的晚会(树的最大独立集)

    https://vjudge.net/problem/UVA-1220 题意: 公司里有n个人形成一个树状结构,即除了老板以外每个员工都有唯一的直属上司.要求选尽量多的人,但不能同时选择一个人和他的直 ...

  4. uva 1220

    1220 - Party at Hali-Bula Time limit: 3.000 seconds Dear Contestant, I'm going to have a party at my ...

  5. UVa 1220 - Party at Hali-Bula(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. UVa 1220 (树的最大独立集) Party at Hali-Bula

    题意: 有一棵树,选出尽可能多的节点是的两两节点不相邻,即每个节点和他的子节点只能选一个.求符合方案的最大节点数,并最优方案判断是否唯一. 分析: d(u, 0)表示以u为根的子树中,不选u节点能得到 ...

  7. UVA - 1220 Party at Hali-Bula 树的最大独立集

    题意:  给定n个人,存在上下级关系,每个人只有一个上级,求最大独立集.并判断最大独立集是否唯一 思路:d[i][0]表示以i为根的子树中,不选择第i个节点的最大独立集,f[i][0]表示以i为根的子 ...

  8. UVa 1220 Party at Hali-Bula (树形DP,最大独立集)

    题意:公司有 n 个人形成一个树形结构,除了老板都有唯一的一个直系上司,要求选尽量多的人,但不能同时选一人上和他的直系上司,问最多能选多少人,并且是不是唯一的方案. 析:这个题几乎就是树的最大的独立集 ...

  9. UVA - 1220 Party at Hali-Bula (树形DP)

    有 n 个员工,n-1个从属关系. 不能同时选择某个员工和他的直接上司,问最多可以选多少人,以及选法是否唯一. 树上的最大独立集问题.只不过多了一个判断唯一性. dp[u][0]表示不选这个点的状态, ...

随机推荐

  1. Swift实战-豆瓣电台(八)播放进度与时间

    视频观看地址:http://www.tudou.com/programs/view/4mEtz8S72k0/?resourceId=399000367_06_02_99 这节主要内容是NSTimer, ...

  2. 最大权闭合图hdu3996

    定义:最大权闭合图:是有向图的一个点集,且该点集的所有出边都指向该集合.即闭合图内任意点的集合也在改闭合图内,给每个点分配一个点权值Pu,最大权闭合图就是使闭合图的点权之和最大. 最小割建边方式:源点 ...

  3. 如何为 Eclipse 中的 Java 源文件设置为 UTF-8 默认编码(转)

    要让一个 Java 源文件打开时编码格式为 UTF-8,需要做2件事情: 1)设置Java 源文件的默认编码格式为UTF-8: 2)设置workspace的编码格式为UTF-8. 相应设置如下: 设置 ...

  4. TF255466: Team Foundation Server 的配置过程无法继续。以前的更新或安装需要重

    在验证是否可以安装 SharePoint 时的提示,Error [ System Checks ] TF255466: The configuration process for Team Found ...

  5. JQuery书写Ajax的几种方式?

    1 $.ajax({ type: "Post", //请求方式 ("POST" 或 "GET"), 默认为 "GET" ...

  6. Mysql 修改字段长度、修改列名、新增列

    alter table 表名 modify column 字段名 类型; 例如 数据库中user表 name字段是varchar(30) 可以用 ) ; --修改字段长度 )--修改表列名 ); -- ...

  7. Power Gating的设计(概述)

    Leakage power随着CMOS电路工艺进程,功耗越来越大. Power Domain的开关一般通过硬件中的timer和系统层次的功耗管理软件来进行控制,需要在一下几方面做trade-off: ...

  8. 项目中empty遇到的一个问题

    搜索传参时,数据能获取到,搜索结果不是根据参数得出的,在定义搜索条件时因为empty引起的一个问题,键为0的值没有获取到, 记住:!empty 已经把0排除了

  9. 三、Java基础---------关于继承、构造函数、静态代码块执行顺序示例讲解

    在上节博客中曾提到过类的继承,这篇文章主要是介绍类的继承.构造函数以及静态代码块的执行顺序. 首先接着分析在黑马基础测试中的一个关于继承的题目,题目描述如下: 声明类Person,包含2个成员变量:n ...

  10. SSAS中角色(Role)定义需要注意的两个地方

    开发过SSAS Cube的朋友应该都知道,我们可以在SSAS中设置若干个角色,把windows账号放入这些角色中来限制不同的windows账号可以看到的数据有哪些,这里有两点需要注意一下. 首先在Cu ...