题目链接:http://poj.org/problem?id=3660

Cow Contest
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10066   Accepted: 5682

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2

题目大意:有n头牛,然后有m个条件 每个条件有两个整数a,b表示a能打败b  然后问你有多少头牛能够确定名次。
解题思路:考虑到能够确定名次的牛需要满足一个条件(打败他的牛的个数加上他打败的牛的个数为n-1)
AC代码:
 #include <stdio.h>
#include <string.h>
int p[][];
int n,m;
void floyd()
{
int i,j,k;
for (k = ; k <= n; k ++)
{
for (i = ; i <= n; i ++)
{
for (j = ; j <= n; j ++)
{
if (p[i][k] && p[k][j]) //间接相连也表示能够打败
p[i][j] = ;
}
}
}
}
int main ()
{
int i,j,a,b;
while (~scanf("%d%d",&n,&m))
{
memset(p,,sizeof(p)); for (i = ; i < m; i ++)
{
scanf("%d%d",&a,&b);
p[a][b] = ;
}
floyd();
int ans,sum = ;
for (i = ; i <= n; i ++)
{
ans = ;
for (j = ; j <= n; j ++)
{
ans += p[i][j]; //他打败的牛的个数
ans += p[j][i]; //打败他的牛的个数
}
if (ans == n-)
sum ++;
}
printf("%d\n",sum);
}
return ;
}
												

POJ 3660 Cow Contest的更多相关文章

  1. POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包)

    POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包) Description N (1 ≤ N ...

  2. POJ 3660 Cow Contest 传递闭包+Floyd

    原题链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. POJ 3660—— Cow Contest——————【Floyd传递闭包】

    Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  4. POJ - 3660 Cow Contest 传递闭包floyed算法

    Cow Contest POJ - 3660 :http://poj.org/problem?id=3660   参考:https://www.cnblogs.com/kuangbin/p/31408 ...

  5. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  6. ACM: POJ 3660 Cow Contest - Floyd算法

    链接 Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Descri ...

  7. poj 3660 Cow Contest(传递闭包 Floyd)

    链接:poj 3660 题意:给定n头牛,以及某些牛之间的强弱关系.按强弱排序.求能确定名次的牛的数量 思路:对于某头牛,若比它强和比它弱的牛的数量为 n-1,则他的名次能够确定 #include&l ...

  8. POJ 3660 Cow Contest (闭包传递)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7690   Accepted: 4288 Descr ...

  9. POJ 3660 Cow Contest (floyd求联通关系)

    Cow Contest 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/H Description N (1 ≤ N ≤ 100) ...

随机推荐

  1. C#操作Access数据库(创建&修改结构)

    本文转自:http://www.cnblogs.com/liyugang/archive/2012/11/17/2775393.html 想要在程序中控制Access,不是数据,而是Access数据库 ...

  2. BPM与OA,选择好烦恼!

    企业在信息化建设的过程中 难免遭遇BPM和OA之争, 难!难!难! 选择BPM吧, 有人觉得你“打肿脸充胖子”: 选择OA嘛, “行业大哥”们已经在BPM的路上越走越远… 其实, OA和BPM从某种意 ...

  3. ubuntu安装多个qt版本--不同qt版本编译同一个程序时出现错误--解决方案

    方法: 在ubuntu终端: # make clean   //有Makefile文件的情况 # rm Makefile *.pro.user # qmake  //有多个qt版本,最好指定qmake ...

  4. JS获取上传文件的名称、格式、大小

    <input id="File1" type="file" onchange="checkFile(this)" /> 方式一) ...

  5. java基础-006

    37.JDBC JDBC是允许用户在不同数据库之间做选择的一个抽象层.JDBC允许开发者用JAVA写数据库引用程序,而不需要关心底层特定数据库的细节. 38.驱动(Driver) 在JDBC中的角色 ...

  6. kali linux karmetasploit配置【续】

    Karmetasploit In Action https://www.offensive-security.com/metasploit-unleashed/karmetasploit-action ...

  7. 2016 - 1 -17 GCD学习总结

    一:GCD中的两个核心概念,队列与任务: 1.任务:执行什么操作.(代码块 block) 任务执行的类型分为以下两种: 1.1同步执行任务:在当前线程执行任务.不会开辟新的线程. 1.2异步执行任务: ...

  8. 2016-1-6第一个完整APP 私人通讯录的实现 2:增加提示用户的提示框,监听文本框

    一:在登录时弹出提示用户的提示框: 1.使用第三方框架. 2.在登陆按钮点击事件中增加如下代码: - (IBAction)loginBtnClicked { NSString *acount = se ...

  9. [Java Basics] Stack, Heap, Constructor, I/O, Immutable, ClassLoader

    Good about Java: friendly syntax, memory management[GC can collect unreferenced memory resources], o ...

  10. 【Oracle XE系列之二】PLSQL Developer 远程连接Oracle XE数据库

    1.去http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html下载Instant Cli ...