混合编程[python+cpp+cuda]
很多时候,我们是基于python进行模型的设计和运行,可是基于python本身的速度问题,使得原生态python代码无法满足生产需求,不过我们可以借助其他编程语言来缓解python开发的性能瓶颈。这里简单介绍个例子,以此完成如何先基于cuda编写瓶颈函数,然后在将接口通过cpp进行封装,最后以库的形式被python调用。
1 cpp+python
首先,介绍下如何python调用cpp的代码。这里极力推荐pybind11。因为pybind11是一个轻量级,只包含头文件的库,他可以在C++中调用python,或者python中调用C++代码。其语法类似Boost.Python。可是不同的是Boost是一个重量级的库,因为为了兼容几乎所有的C++编译器,所以需要支持哪些最老的,bug最多的编译器。该作者考虑到现在c11都很普及了,所以丢弃那些之前的东西,从而打造这么一个轻量级的库。我们通过代码统计:
首先是对pybind11的安装:
git clone https://github.com/pybind/pybind11.git
cd pybind11
mkdir build && cd build
cmake ../
make -j32
上述cmake需要3.2及以上版本。最后输出结果如下图所示:
这里简单呈现下一级目录:
为了实现python调用cpp,我们先建立个文件名叫test.cpp
#include<pybind11/pybind11.h>
namespace py = pybind11;
int
add(int i, int j){
return i+j;
}
// 该宏会在python的import语句触发
PYBIND11_MODULE(example, m){
m.doc() = "pybind11 example plugin";
m.def("add", &add, "a function which adds two numbers",
py::arg("i"), py::arg("j"));
}
然后执行:
g++ -Wall -shared -std=c++11 -fPIC \
-I/home/zzc/software/pybind11/include \
`cd /home/zzc/software/pybind11 && python3 -m pybind11 --includes` \
test.cpp \
-o example`python3-config --extension-suffix`
结果如下图
接下来,我们将其改成参数支持numpy,可参考官网文档;pybind11—python numpy与C++数据传递:
#include<pybind11/pybind11.h>
#include<pybind11/numpy.h>
namespace py = pybind11;
int
add(py::array_t<float> &array, int col){
py::buffer_info buf1 = array.request();
float *p = (float *)buf1.ptr;
for (int i=0; i<col; i++){
printf("cur value %lf\n", *p++);
}
return 0;
}
PYBIND11_MODULE(example, m){
m.doc() = "pybind11 example plugin";
m.def("add", &add, "a function which adds two numbers");
}
然后依然用上述命令编译成so,调用结果如下图:
更详细的pybind11使用方法,可阅读官方文档
2 cuda+cpp+python
这里只介绍如何编写cuda的代码,然后提供python接口。通过调查pybind11的issues:alias template error with Intel 2016.0.3 compilers,如果直接编写cu代码,然后一步到位,会触发很多问题。而如这里最后所述,较好的方式就是分开:
- 编写cuda代码,并生成动态链接库;
- 编写cpp代码,通过函数引用方式用pybind11进行接口封装;
- python导入对应模块即可使用。
如上图所示,首先,编写cuda代码,这里为了简洁,我们只写一个printf
// cuda_test.cu
#include<cuda_runtime.h>
#include<stdio.h>
__global__ void
kernel(){
printf("inside in kernel\n");
}
int
cuda(int a, int b){
kernel<<<1,10>>>();
cudaDeviceSynchronize();
return 0;
}
对应头文件:
//cuda_test.h
int cuda(int, int);
然后我们将其用nvcc编译成动态链接库
nvcc --shared -Xcompiler -fPIC cuda_test.cu -o libcutest.so
结果如上图
接着,我们借助pybind11,此时增加了几行
#include<pybind11/pybind11.h>
#include"cuda_test.h" //新增的
namespace py = pybind11;
int
add(int i, int j){
return i+j;
}
PYBIND11_MODULE(example, m){
m.doc() = "pybind11 example plugin";
m.def("add", &add, "a function which adds two numbers",
py::arg("i"), py::arg("j"));
m.def("cuda", &cuda,"testing",
py::arg("a"), py::arg("b")); //新增的
}
然后输入如下编译方式:
g++ -Wall -shared -std=c++11 -fPIC \
-L. -lcutest \
-I/home/zzc/software/pybind11/include \
`cd /home/zzc/software/pybind11 && python3 -mpybind11 --includes` \
test.cpp \
-o example`python3-config --extension-suffix`
此时生成结果
然后使用
混合编程[python+cpp+cuda]的更多相关文章
- 混合编程:如何用python11调用C++
摘要:在实际开发过程中,免不了涉及到混合编程,比如,对于python这种脚本语言,性能还是有限的,在一些对性能要求高的情景下面,还是需要使用c/c++来完成. 那怎样做呢?我们能使用pybind11作 ...
- C# 托管和非托管混合编程
在非托管模块中实现你比较重要的算法,然后通过 CLR 的平台互操作,来使托管代码调用它,这样程序仍然能够正常工作,但对非托管的本地代码进行反编译,就很困难. 最直接的实现托管与非托管编程的方法就是 ...
- mpi和cuda混合编程的正确编译
针对大数据的计算,很多程序通过搭建mpi集群进行加速,并取得了很好的效果.算法内部的加速,当前的并行化趋势是利用GPU显卡进行算法加速.针对并行性非常好的算法,GPU加速效果将远大于集群带来的加速效果 ...
- Python和C++的混合编程(使用Boost编写Python的扩展包)
想要享受更轻松愉悦的编程,脚本语言是首选.想要更敏捷高效,c++则高山仰止.所以我一直试图在各种通用或者专用的脚本语言中将c++的优势融入其中.原来贡献过一篇<c++和js的混合编程>也是 ...
- 批处理与python代码混合编程的实现方法
批处理可以很方便地和其它各种语言混合编程,除了好玩,还有相当的实用价值, 比如windows版的ruby gem包管理器就是运用了批处理和ruby的混合编写, bathome出品的命令工具包管理器bc ...
- 使用 ctypes 进行 Python 和 C 的混合编程
Python 和 C 的混合编程工具有很多,这里介绍 Python 标准库自带的 ctypes 模块的使用方法. 初识 Python 的 ctypes 要使用 C 函数,需要先将 C 编译成动态链接库 ...
- 在Qt(C++)中与Python混合编程
一.PythonQt库 在Qt(C++)中与Python混合编程,可以使用PythonQt库. 网站首页:http://pythonqt.sourceforge.net 下载页面:https://so ...
- CUDA+OpenGL混合编程
CUDA+OpenGL混合编程示例: #include <stdio.h> #include <stdlib.h> #include "GL\glew.h" ...
- 混合编译.c/.cpp与.cu文件
混合编译.c/.cpp与.cu文件 项目中用到cuda编程,写了kernel函数,需要nvcc编译器来编译..c/.cpp的文件,假定用gcc编译. 如何混合编译它们,整体思路是:.cu文件编译出的东 ...
随机推荐
- 如何将视频导入到ipad中并播放
首先在电脑上下载并安装itunes,然后用apple账号登入, 在ipad上从apple store中下载一个播放器如KMPlayer 点击itunes上小手机的图标,找到文件共享,选中应用KMPla ...
- windows7安装MySQL-python遇到的坑
最近在windows环境上搭建flask使用环境,遇到过很多坑,这次就记录下安装flask-mysqldb所遇到的坑. 正常逻辑是使用pip install flask-mysqldb进行安装.但是会 ...
- Python迭代和解析(1):列表解析
解析.迭代和生成系列文章:https://www.cnblogs.com/f-ck-need-u/p/9832640.html Python中的解析 Python支持各种解析(comprehensio ...
- cocos creator主程入门教程(二)—— 弹窗管理
五邑隐侠,本名关健昌,10年游戏生涯,现隐居五邑.本系列文章以TypeScript为介绍语言. 我们已经知道怎样制作.加载.显示界面.但cocos没有提供一个弹窗管理模块,对于一个多人合作的项目,没有 ...
- C#对象比较的总结
简单整型比较: 从这里可以看出整型比较无论是==和Equals方法都是进行比较,比较“正常” ; ; Console.WriteLine(m1 == m2);//值比较True Console.Wri ...
- Java开发笔记(二十六)方法的输出参数
前面介绍了方法的输入参数,与输入参数相对应的则为输出参数,输出参数也被称作方法的返回值,意思是经过方法的处理最终得到的运算数值.这个返回值可能是整型数,也可能是双精度数,也可能是数组等其它类型,甚至允 ...
- Java 学习笔记 使用synchronized实现生产者消费者模式
说明 Object.wait()使当前的线程进入到等待状态(进入到等待队列) Object.notifyAll() 唤醒等待中的全部线程 Object.notify() 随机唤醒一个线程 代码 con ...
- 如何使用纯CSS制作特效导航条?
先上张图,如何使用纯 CSS 制作如下效果? 在继续阅读下文之前,你可以先缓一缓.尝试思考一下上面的效果或者动手尝试一下,不借助 JS ,能否巧妙的实现上述效果. OK,继续.这个效果是我在业务开发的 ...
- maven 聚合
聚合很简单, 在父 pom 中写出子 pom 文件的路径即可 <name>parent Maven Webapp</name> <!-- FIXME change it ...
- C#判断远程计算机的指定端口是否打开的代码
如下的内容段是关于C#判断远程计算机的指定端口是否打开的内容,应该能对小伙伴有一些用. using System.Net;if(!string.IsNullOrEmpty(txtPort.Text)) ...