很多时候,我们是基于python进行模型的设计和运行,可是基于python本身的速度问题,使得原生态python代码无法满足生产需求,不过我们可以借助其他编程语言来缓解python开发的性能瓶颈。这里简单介绍个例子,以此完成如何先基于cuda编写瓶颈函数,然后在将接口通过cpp进行封装,最后以库的形式被python调用。

1 cpp+python

首先,介绍下如何python调用cpp的代码。这里极力推荐pybind11。因为pybind11是一个轻量级,只包含头文件的库,他可以在C++中调用python,或者python中调用C++代码。其语法类似Boost.Python。可是不同的是Boost是一个重量级的库,因为为了兼容几乎所有的C++编译器,所以需要支持哪些最老的,bug最多的编译器。该作者考虑到现在c11都很普及了,所以丢弃那些之前的东西,从而打造这么一个轻量级的库。我们通过代码统计:

首先是对pybind11的安装:

git clone https://github.com/pybind/pybind11.git
cd pybind11
mkdir build && cd build
cmake ../
make -j32

上述cmake需要3.2及以上版本。最后输出结果如下图所示:



这里简单呈现下一级目录:

为了实现python调用cpp,我们先建立个文件名叫test.cpp

#include<pybind11/pybind11.h>

namespace py = pybind11;

int
add(int i, int j){
return i+j;
} // 该宏会在python的import语句触发
PYBIND11_MODULE(example, m){
m.doc() = "pybind11 example plugin";
m.def("add", &add, "a function which adds two numbers",
py::arg("i"), py::arg("j"));
}

然后执行:

g++  -Wall -shared -std=c++11 -fPIC \
-I/home/zzc/software/pybind11/include \
`cd /home/zzc/software/pybind11 && python3 -m pybind11 --includes` \
test.cpp \
-o example`python3-config --extension-suffix`

结果如下图



接下来,我们将其改成参数支持numpy,可参考官网文档pybind11—python numpy与C++数据传递

#include<pybind11/pybind11.h>
#include<pybind11/numpy.h> namespace py = pybind11; int
add(py::array_t<float> &array, int col){ py::buffer_info buf1 = array.request();
float *p = (float *)buf1.ptr;
for (int i=0; i<col; i++){
printf("cur value %lf\n", *p++);
}
return 0;
} PYBIND11_MODULE(example, m){
m.doc() = "pybind11 example plugin";
m.def("add", &add, "a function which adds two numbers");
}

然后依然用上述命令编译成so,调用结果如下图:

更详细的pybind11使用方法,可阅读官方文档

2 cuda+cpp+python

这里只介绍如何编写cuda的代码,然后提供python接口。通过调查pybind11的issues:alias template error with Intel 2016.0.3 compilers,如果直接编写cu代码,然后一步到位,会触发很多问题。而如这里最后所述,较好的方式就是分开:

  • 编写cuda代码,并生成动态链接库;
  • 编写cpp代码,通过函数引用方式用pybind11进行接口封装;
  • python导入对应模块即可使用。



如上图所示,首先,编写cuda代码,这里为了简洁,我们只写一个printf

// cuda_test.cu
#include<cuda_runtime.h>
#include<stdio.h> __global__ void
kernel(){
printf("inside in kernel\n");
} int
cuda(int a, int b){ kernel<<<1,10>>>();
cudaDeviceSynchronize(); return 0;
}

对应头文件:

//cuda_test.h
int cuda(int, int);

然后我们将其用nvcc编译成动态链接库

nvcc --shared -Xcompiler -fPIC cuda_test.cu -o libcutest.so



结果如上图

接着,我们借助pybind11,此时增加了几行

#include<pybind11/pybind11.h>
#include"cuda_test.h" //新增的 namespace py = pybind11; int
add(int i, int j){
return i+j;
} PYBIND11_MODULE(example, m){
m.doc() = "pybind11 example plugin";
m.def("add", &add, "a function which adds two numbers",
py::arg("i"), py::arg("j"));
m.def("cuda", &cuda,"testing",
py::arg("a"), py::arg("b")); //新增的
}

然后输入如下编译方式:

g++  -Wall -shared -std=c++11 -fPIC \
-L. -lcutest \
-I/home/zzc/software/pybind11/include \
`cd /home/zzc/software/pybind11 && python3 -mpybind11 --includes` \
test.cpp \
-o example`python3-config --extension-suffix`

此时生成结果



然后使用

混合编程[python+cpp+cuda]的更多相关文章

  1. 混合编程:如何用python11调用C++

    摘要:在实际开发过程中,免不了涉及到混合编程,比如,对于python这种脚本语言,性能还是有限的,在一些对性能要求高的情景下面,还是需要使用c/c++来完成. 那怎样做呢?我们能使用pybind11作 ...

  2. C# 托管和非托管混合编程

    在非托管模块中实现你比较重要的算法,然后通过 CLR 的平台互操作,来使托管代码调用它,这样程序仍然能够正常工作,但对非托管的本地代码进行反编译,就很困难.   最直接的实现托管与非托管编程的方法就是 ...

  3. mpi和cuda混合编程的正确编译

    针对大数据的计算,很多程序通过搭建mpi集群进行加速,并取得了很好的效果.算法内部的加速,当前的并行化趋势是利用GPU显卡进行算法加速.针对并行性非常好的算法,GPU加速效果将远大于集群带来的加速效果 ...

  4. Python和C++的混合编程(使用Boost编写Python的扩展包)

    想要享受更轻松愉悦的编程,脚本语言是首选.想要更敏捷高效,c++则高山仰止.所以我一直试图在各种通用或者专用的脚本语言中将c++的优势融入其中.原来贡献过一篇<c++和js的混合编程>也是 ...

  5. 批处理与python代码混合编程的实现方法

    批处理可以很方便地和其它各种语言混合编程,除了好玩,还有相当的实用价值, 比如windows版的ruby gem包管理器就是运用了批处理和ruby的混合编写, bathome出品的命令工具包管理器bc ...

  6. 使用 ctypes 进行 Python 和 C 的混合编程

    Python 和 C 的混合编程工具有很多,这里介绍 Python 标准库自带的 ctypes 模块的使用方法. 初识 Python 的 ctypes 要使用 C 函数,需要先将 C 编译成动态链接库 ...

  7. 在Qt(C++)中与Python混合编程

    一.PythonQt库 在Qt(C++)中与Python混合编程,可以使用PythonQt库. 网站首页:http://pythonqt.sourceforge.net 下载页面:https://so ...

  8. CUDA+OpenGL混合编程

    CUDA+OpenGL混合编程示例: #include <stdio.h> #include <stdlib.h> #include "GL\glew.h" ...

  9. 混合编译.c/.cpp与.cu文件

    混合编译.c/.cpp与.cu文件 项目中用到cuda编程,写了kernel函数,需要nvcc编译器来编译..c/.cpp的文件,假定用gcc编译. 如何混合编译它们,整体思路是:.cu文件编译出的东 ...

随机推荐

  1. 如何用sysbench做好IO性能测试

    sysbench 是一个非常经典的综合性能测试工具,通常都用它来做数据库的性能压测,但也可以用来做CPU,IO的性能测试.而对于IO测试,不是很推荐sysbench,倒不是说它有错误,工具本身没有任何 ...

  2. Python爬虫之使用celery加速爬虫

      celery是一个基于分布式消息传输的异步任务队列,它专注于实时处理,同时也支持任务调度.关于celery的更多介绍及例子,笔者可以参考文章Python之celery的简介与使用.   本文将介绍 ...

  3. .net里面的字典Dictionary

    Dictionary<int, string> d = new Dictionary<int, string>();            d.Add(1, "wjl ...

  4. 【转载】ASP.NET中Server.MapPath方法获取网站根目录总结

    在ASP.NET网站应用程序中,可以通过Server.MapPath方法来获取跟服务器有关的目录信息,如获取网站的根目录.获取当前代码文件所在的目录路径.获取当前代码所在路径的上级路径等.Server ...

  5. .NET Core整理之配置EFCore

    1.新建ASP.NET Core Web应用程序 2.从NuGet下载安装以下工具包 Microsoft.EntityFrameworkCore Microsoft.EntityFrameworkCo ...

  6. Vue:如何在地图上添加自定义覆盖物(点)

    目录 如何在地图上添加自定义覆盖物(点) 首发日期:2019-1-25 如何在地图上添加自定义覆盖物(点) 此文重点是在地图上标点,所以就省去引入百度地图的步骤了. 先给一下最终的效果. 这个效果主要 ...

  7. 混用Int与IntPtr导致GetProcAddress始终返回null

      注意NET某些类型在不同平台上的长度 NET中用句柄用得最多的是在DLLIMPORT中,混用int与intptr可能会导致某些API声明在X64平台中表现不正常,如 [DllImport(&quo ...

  8. Jquery 使用和Jquery选择器

    jQuery中的顶级对象($) jQuery 中最常用的对象即 $ 对象,要想使用 jQuery 的方法必须通过 $ 对象.只有将普通的 Dom 对象封装成 jQuery 对象,然后才能调用 jQue ...

  9. Python使用Plotly绘图工具,绘制柱状图

    使用Plotly绘制基本的柱状图,需要用到的函数是graph_objs 中 Bar函数 通过参数,可以设置柱状图的样式. 通过barmod进行设置可以绘制出不同类型的柱状图出来. 我们先来实现一个简单 ...

  10. Vue2.5笔记:如何在项目中使用和配置Vue

    最开始的项目开发中,我们如果使用第三方的库我们会直接在项目中直接使用 script 元素标签引入即可. <script src="../xxx.js"></scr ...