<更新提示>

<第一次更新> 通过两道简单的例题,我们来重新认识树形DP。


<正文>

战略游戏(luoguP1026)

Description

Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。

请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵。

Input Format

输入文件中数据表示一棵树,描述如下: 第一行 N,表示树中结点的数目。 第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连),接下来k个数,分别是每条边的另一个结点标号r1,r2,...,rk。 对于一个n(0<n<=1500)个结点的树,结点标号在0到n-1之间,在输入文件中每条边只出现一次。

Output Format

输出文件仅包含一个数,为所求的最少的士兵数目。

Sample Input

4
0 1 1
1 2 2 3
2 0
3 0

Sample Output

1

解析

在树形图求解最优化问题,很明显就是一道树形DP的模板题。

我们根据树形\(DP\)通常设置状态的套路来设计这道题的状态:\(f[i][0/1]\)代表以\(i\)为根的子树中的最小士兵数,\(1\)代表节点i放了士兵,\(0\)代表节点i没放士兵。

对于状态的转移,我们可以分两种情况讨论:

1.节点\(i\)放一个士兵,节点\(i\)的子节点可以放士兵,也可以不放士兵

2.节点\(i\)不放士兵,节点i的各个子节点都必须放士兵

那么所对应的状态转移方程就是:

\[1.f[i][1]=\sum_{j \in son(i)}min\{f[j][0],f[j][1]\}+1
\\2.f[i][0]=\sum_{j \in son(i)}f[j][1]
\]

注意到题中没有明确的树根的指明,所以我们只要随便找一个入度为0的点当做树根执行记忆化搜索即可。

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
const int N=1500+30;
int n,f[N][2],ans=0x3f3f3f3f,vis[N];vector < int >Link[N];
inline void input(void)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int index,num,temp;
scanf("%d%d",&index,&num);
for(int j=1;j<=num;j++)
{
scanf("%d",&temp);
Link[index].push_back(temp);
vis[temp]=1;
}
}
}
inline void dp(int root)
{
f[root][1]=1;
f[root][0]=0;
for(int i=0;i<Link[root].size();i++)
{
int Son=Link[root][i];
dp(Son);
f[root][0]+=f[Son][1];
f[root][1]+=min(f[Son][0],f[Son][1]);
}
return;
}
int main(void)
{
freopen("strategi.in","r",stdin);
freopen("strategi.out","w",stdout);
input();
int root;
for(int i=0;i<n;i++)
{
if(!vis[i])
{
root=i;
break;
}
}
dp(root);
printf("%d\n",min(f[root][0],f[root][1]));
}

最大利润(SMOJ1782)

Description

政府邀请了你在火车站开饭店,但不允许同时在两个相连接的火车站开。

任意两个火车站有且只有一条路径,每个火车站最多有50个和它相连接的火车站。

告诉你每个火车站的利润,问你可以获得的最大利润为多少。

Input Format

第一行输入整数N(<=100000),表示有N个火车站,分别用1,2,...,N来编号。

接下来N行,每行一个整数表示每个站点的利润,接下来N-1行描述火车站网络,每行两个整数,表示相连接的两个站点。

Output Format

输出一个整数表示可以获得的最大利润

Sample Input

6
10
20
25
40
30
30
4 5
1 3
3 4
2 3
6 4

Sample Output

90

解析

这道题和上一道题很像,都是很明显的树形\(DP\)。但是两道题有不同之处:上一题是覆盖相邻的边,但这题是覆盖相邻的点。上一题是必须全部覆盖,这一题是可以不全部覆盖,但不能重叠。我们仍然可以设\(f[i][0/1]\)代表以\(i\)为根的子树中的最大利润,\(0\)代表节点i没有开餐馆,\(1\)代表节点\(i\)开了餐馆。

状态的转移就和上一题很相似了:

1.若节点\(i\)开了餐馆,则它的子节点可以开餐馆,也可以不开

2.若节点\(i\)没开餐馆,则它的子节点都不能开餐馆

状态转移方程:

\[f[i][0]=\sum_{j \in son(i)}max{f[j][1],f[j][0]}
\\f[i][0]=\sum_{j \in son(i)}f[j][0]+a[i]
\]

注意在记忆化搜索的时候需要开一个访问数组标记,避免递归死循环。

\(Code:\)

#include<bits/stdc++.h>
using namespace std;
const int N=100000+80;
int n,f[N][2],a[N],vis[N],ans=0;
vector < int > Link[N];
inline void input(void)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
Link[u].push_back(v);
Link[v].push_back(u);
}
}
inline void dp(int root)
{
f[root][0]=0;
f[root][1]=a[root];
for(int i=0;i<Link[root].size();i++)
{
int Son=Link[root][i];
if(vis[Son])continue;
vis[Son]=1;
dp(Son);
f[root][0]+=max(f[Son][1],f[Son][0]);
f[root][1]+=f[Son][0];
}
return;
}
int main(void)
{
freopen("profit.in","r",stdin);
freopen("profit.out","w",stdout);
input();
memset(f,0x00,sizeof f);
memset(vis,0x00,sizeof vis);
vis[1]=1;
dp(1);
printf("%d\n",max(f[1][1],f[1][0]));
}

<后记>

『战略游戏 最大利润 树形DP』的更多相关文章

  1. 『没有上司的舞会 树形DP』

    树形DP入门 有些时候,我们需要在树形结构上进行动态规划来求解最优解. 例如,给定一颗\(N\)个节点的树(通常是无根树,即有\(N-1\)条无向边),我们可以选择任意节点作为根节点从而定义出每一颗子 ...

  2. 『土地征用 Land Acquisition 斜率优化DP』

    斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer Jo ...

  3. 『大 树形dp』

    大 Description 滑稽树上滑稽果,滑稽树下你和我,滑稽树前做游戏,滑稽多又多.树上有 n 个节点,它们构成了一棵树,每个节点都有一个滑稽值. 一个大的连通块是指其中最大滑稽值和最小滑稽值之差 ...

  4. 『You Are Given a Tree 整体分治 树形dp』

    You Are Given a Tree Description A tree is an undirected graph with exactly one simple path between ...

  5. 『快乐链覆盖 树形dp』

    快乐链覆盖 Description 给定一棵 n 个点的树,你需要找至多 k 条互不相交的路径,使得它们的长度之和最大 定义两条路径是相交的:当且仅当存在至少一个点,使得这个点在两条路径中都出现 定义 ...

  6. 『kamp 树形dp』

    kamp Description jz 市的云台山是个很美丽的景区,小 x 暑期到云台山打工,他的任务是开景区的大巴. 云台山景区有 N 个景点,这 N 个景点由 N-1 条道路连接而成,我们保证这 ...

  7. 『树上匹配 树形dp』

    树上匹配 Description 懒惰的温温今天上班也在偷懒.盯着窗外发呆的温温发现,透过窗户正巧能看到一棵 n 个节点的树.一棵 n 个节点的树包含 n-1 条边,且 n 个节点是联通的.树上两点之 ...

  8. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  9. 『玩具装箱TOY 斜率优化DP』

    玩具装箱TOY(HNOI2008) Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

随机推荐

  1. CentOS7完成mysql的安装和远程访问

    详见链接https://blog.csdn.net/weixin_42266606/article/details/80879571 (此处我的本地用户名root,密码root:远程用户名root,密 ...

  2. Linux学习之文件系统权限及表示

    三类人 用户主(user:u):文件的所有者 同组人(group:g):与文件主同组的用户 其他人(other:o):除用户主和同组人外的其他所有人 三种权限 读权限(r):指用户对文件或目录的读许可 ...

  3. redis的雪崩与穿透原理的浅理解

    首先列一下主要说什么, 1.什么是Redis缓存的雪崩? 2.什么是Redis缓存的穿透? 3.Redis缓存崩溃会怎么样? 4.怎么预防Redis缓存崩溃? 1.什么是Redis缓存的雪崩? 举个栗 ...

  4. sublime2 nodejs 执行编译无反应

    这个问题困扰了我得一周了,好不容易解决了, 一.问题描述: 安装网上的一些教程在sublime text 2 里面安装Nodejs 的编译环境,但是安装完之后执行编译没有任何输出信息,编译没有反应,只 ...

  5. RSP小组——团队冲刺博客二

    RSP小组--团队冲刺博客二 冲刺日期:2018年12月11日 前言 经过第一天的冲刺,我们开始了我们冲刺之路,但是不知为什么,我们的动力并不足,首先可能是我们前期对该项目的编制过程中,因为没有经验, ...

  6. Blocks [POJ3734] [矩阵快速幂]

    题意: 有长度为n的一排格子,每个格子里面可以任意填入1,2,3,4四个数字,问1,2都为偶数个的方案 T组数据,每组数据一个n(<=1e9) 样例输入 2 1 2 样例输出 2 6 分析 设d ...

  7. 关于VB里判断逻辑的说明

    如上图,当进行连续判断的时候,即使第一个已经不符合条件了,后面的依然会计算.这点一定要记住,除非你所有的函数都有必要执行,否则会导致效率降低. 减代码不一定能提高效率,对于IIF和连续判断写法,貌似很 ...

  8. Tips_关闭按钮的简单实现 && Felx实现水平垂直居中

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. ssm知识点整理

    第1章 resultType和resultMap的区别是什么?  MyBatis中在查询进行select映射的时候,返回类型可以用resultType,也可以用resultMap,resultType ...

  10. 【转】线段树完全版~by NotOnlySuccess

    线段树完全版  ~by NotOnlySuccess 很早前写的那篇线段树专辑至今一直是本博客阅读点击量最大的一片文章,当时觉得挺自豪的,还去pku打广告,但是现在我自己都不太好意思去看那篇文章了,觉 ...