Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
 
Output
Output the maximal summation described above in one line.
 

Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8
 
题意:给你一个序列n个数组成,然后让你在里面找到m个字子串(不能有交叉,也不能有连接 的情况),让这m个子串的和最大。
题解:一眼扫过去就是DP,划分问题,第j个选择或者不选, 选(是继续上一个子串还是重新开一个子串),不选(不考虑,所以需要维护一个当前的最大值(ans/tmax))
   最初的状态转移方程:d[i][j]=max(d[i][j-1],d[i-1][k])+num[j],其中k=i-1,i,...,j-1;(没有优化的话大概三重循环)
   数据给的很大,有两个方面的优化:时间和空间,
   优化:时间(选择k的那一重循环可以用空间换,用pre[i]来表示到i的时候(不包括num[i])的最大值),循环的时候更新一下,就可以不用循环k那一层了;
      空间:二维数组优化为一维数组,d[i][j]=max(d[i][j-1], pre[j-1])+num[j], 写出pre后明显可以直接去掉一个维度;
      优化后的状态转移方程式:d[j]=max(d[j-1],pre[j-1])+num[j]
反思:这题写的时候,初始方程可以正常的写出来的, 但是用个pre数组来直接去掉k的那一层循环是不会的,思维有点狭隘,一直就想着通过类似01背包的方法来优化, 而没有想到再开一个数组就解决了。
 
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std; const int INF=0x3f3f3f3f;
const int maxn=1e6+;
int f[maxn], pre[maxn], a[maxn]; int main()
{
//freopen("in.txt", "r", stdin);
int m,n;
while(cin>>m>>n)
{
for(int i=; i<=n; i++)
cin>>a[i]; memset(f, , sizeof(f));
memset(pre, , sizeof(pre)); int tmax;
for(int i=; i<=m; i++)
{
tmax=-INF;
for(int j=i; j<=n; j++)
{
f[j]=max(f[j-], pre[j-])+a[j];
pre[j-]=tmax; //注意pre的更新的顺序,pre[j-1]被使用后再更新pre[j-1]
tmax=max(tmax, f[j]);
}
}
cout<<tmax<<endl;
}
return ;
}

HDU 1024 Max Sum Plus Plus(DP的简单优化)的更多相关文章

  1. HDU 1024 Max Sum Plus Plus --- dp+滚动数组

    HDU 1024 题目大意:给定m和n以及n个数,求n个数的m个连续子系列的最大值,要求子序列不想交. 解题思路:<1>动态规划,定义状态dp[i][j]表示序列前j个数的i段子序列的值, ...

  2. hdu 1024 Max Sum Plus Plus DP

    Max Sum Plus Plus Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php ...

  3. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  4. HDU 1024 Max Sum Plus Plus(m个子段的最大子段和)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/ ...

  5. HDU 1024 Max Sum Plus Plus【DP】

    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we ...

  6. HDU 1024 Max Sum Plus Plus(基础dp)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. HDU 1024 max sum plus

    A - Max Sum Plus Plus Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  8. HDU 1024 Max Sum Plus Plus【动态规划求最大M子段和详解 】

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. hdu 1024 Max Sum Plus Plus

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

随机推荐

  1. Java中数组的几个常用算法:插入算法,删除算法,冒泡排序算法

    前言: 在Java中我们常常会用数组,提到数组就不得不介绍数组中常用到的几个算法. 有插入算法,删除算法,冒泡排序算法等. 在学习这几个数组的算法前,我们先来了解一下关于数组一些基本知识. 数组的基本 ...

  2. 记AOP概念理解

    OOD/OOP面向名词领域,AOP面向动词领域. 应用举例 假设有在一个应用系统中,有一个共享的数据必须被并发同时访问,首先,将这个数据封装在数据对象中,称为Data Class,同时,将有多个访问类 ...

  3. Elasticsearch.安装插件(head)

    Elasticsearch.安装插件(head) 环境: Linux 7.x jdk1.8 目录结构(跟目录多了两个文件) /resources   ### 存放软件源 /u01/          ...

  4. 数据结构与算法JS实现

      行解算法题,没错,就是这么方便. 当然也可以使用 Node.js 环境来执行,具体参考Node.js官方文档即可. 二 对象和面向对象编程 js中5种数据类型,并没有定义更多的数据类型,但是运用j ...

  5. 解决postman环境切换,自动获取api签名时间及签名

    postman调试api接口时,常遇到两个问题: 1.环境分为开发环境,测试环境,正式环境,如何只写一个接口,通过切换postman环境来实现不同环境的接口调用? 2. api接口请求时往往会添加,来 ...

  6. php读取和导出Excel文件

    require 'vendor/PHPExcel/PHPExcel.php';require 'vendor/PHPExcel/PHPExcel/IOFactory.php'; public func ...

  7. Javascript基础语法(二)

    三.运算符 1. 算术运算符  + - * / % ++ -- 1.1赋值运算符 = += . -= .*=. /= 1 +=2;  ==>   1 = 1 + 2; 2. 比较运算符 > ...

  8. 配置nginx + keepalived 双主模式(双机互为主备)

  9. Oracle生成GUID

    ,),),),),) GUID FROM ( SELECT SYS_GUID() GUID FROM DUAL )

  10. JS 页面表格的操作

    var showObj = null;var arr = [ ['编号','姓名','性别','年龄','备注','操作'], ['1','lisi','nan','12','66666'], ['2 ...