机器学习基石8-Noise and Error
注:
文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程。
笔记原作者:红色石头
微信公众号:AI有道
上一节课,我们主要介绍了VC Dimension的概念。如果Hypotheses set的VC Dimension是有限的,且有足够多的资料\(N\),同时能够找到一个hypothesis使它的\(E_{in}\approx 0\),那么就能说明机器学习是可行的。本节课主要讨论数据集有Noise的情况下,是否能够进行机器学习,并且介绍了假设空间H下演算法\(\mathcal{A}\)的Error估计。
一、Noise and Probablistic target
上节课推导VC Dimension的数据集是在没有Noise的情况下,本节课讨论如果数据集本身存在Noise,那VC Dimension的推导是否还成立呢?
首先,Data Sets的Noise一般有三种情况:
- 由于人为因素,正类被误分为负类,或者负类被误分为正类;
- 同样特征的样本被模型分为不同的类;
- 样本的特征被错误记录和使用。

之前的数据集是确定的,即没有Noise的,我们称之为Deterministic。现在有Noise了,也就是说在某点处不再是确定分布,而是概率分布了,即对每个\((x,y)\)出现的概率是\(P(y|x)\)
因为Noise的存在,例如在x点,有\(0.7\)的概率\(y=1\),有\(0.3\)的概率\(y=0\),即\(y\)是按照\(P(y|x)\)分布的。数学上可以证明如果数据集按照\(P(y|x)\)概率分布且是iid(Independent and identically distributed,独立同分布)的,那么以
前证明机器可以学习的方法依然奏效,VC Dimension有限即可推断\(E_{in}\)和\(E_{out}\)是近似的。

\(P(y|x)\)称为目标分布(Target Distribution)。它实际上告诉我们最好的选择是什么,同时伴随着多少noise。其实,没有noise的数据仍然可以看成“特殊”的概率分布,即概率仅是1和0。对于以前确定的数据集:\[P(y|x)=\begin{cases}1, f(x)=y\\ 0, f(x)\neq y\end{cases}\]

在引入noise的情况下,新的学习流程图如下所示:

Error Measure
机器学习需要考虑的问题是找出的\(g\)与目标函数\(f\)有多相近,我们一直使用\(E_{out}\)进行误差的估计,那一般的错误测量有哪些形式呢?
我们介绍的\(g\)对错误的衡量有三个特性:
- out-of-sample: 样本外的未知数据
- pointwise: 对每个数据点进行测试
- classification: 看prediction与target是否一致,classification error通常称为\(0/1\) error

pointwise error是对数据集的每个点计算错误并计算平均,\(E_{in}\)和\(E_{out}\)的pointwise error的表达式为:

pointwise error是机器学习中最常用也是最简单的一种错误衡量方式,未来课程中,主要考虑这种方式。pointwise error一般可以分成两类:\(0/1\) error和squared error。\(0/1\) error通常用在分类(classification)问题上,而squared error通常用在回归(regression)问题上。

Ideal Mini-Target由\(P(y|x)\)和err共同决定,0/1 error和squared error的Ideal Mini-Target计算方法不一样。例如下面这个例子,分别用0/1 error和squared error来估计最理想的mini-target是多少。0/1 error中的mini-target是取P(y|x)最大的那个类,而squared error中的mini-target是取所有类的加权平方和。

有了错误衡量,就会知道当前的\(g\)是好还是不好,并会让演算法不断修正,得到更好的\(g\),从而使得\(g\)与目标函数更接近。所以,引入error measure后,学习流程图如下所示:

三、Algorithmic Error Measure
Error有两种:false accept和false reject。false accept意思是误把负类当成正类,false reject是误把正类当成负类。 根据不同的机器学习问题,false accept和false reject应该有不同的权重,这与实际情况是符合的,比如是超市优惠,那么false reject应该设的大一些;如果是安保系统,那么false accept应该设的大一些。

机器学习演算法\(\mathcal{A}\)的cost function error估计有多种方法,真实的err一般难以计算,常用的方法可以采用plausible或者friendly,根据具体情况而定。

引入algorithm error measure 之后,学习流程图如下:

四、Weighted Classification
实际上,机器学习的Cost Function即来自于这些error,也就是算法里面的迭代的目标函数,通过优化使得Error(\(E_{in}\))不断变小。cost function中,false accept和false reject应该赋予不同的权重。那么在感知器学习算法和贪心算法中如何体现?对线性可分的数据集,PLA算法不受影响,因为最终\(E_{in}=0\)。对线性不可分的数据集,使用贪心算法,但对加权的\(E^{0/1}_{in}\),贪心算法应该如何进行?

对不同权重的错误惩罚,可以选用virtual copying的方法。


五、总结
本节课主要讲了在有Noise的情况下,即数据集按照\(P(y|x)\)概率分布,那么VC Dimension仍然成立,机器学习算法推导仍然有效。机器学习cost function常用的Error有0/1 error和squared error两类。实际问题中,对false accept和false reject应该选择不同的权重。
机器学习基石8-Noise and Error的更多相关文章
- 机器学习基石9-Linear Regression
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上节课,主要介绍了在有noise的情况下,VC Bound理论仍然是成立的.同 ...
- 关于Noise and Error主题的一些小知识
(一)Noise会不会对VC bound产生影响? 此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> 答案是不会. 当信号中加入了Noise,其实对我们之前学过的内 ...
- 机器学习基石11-Linear Models for Classification
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课,我们介绍了Logistic Regression问题,建立cross ...
- 机器学习基石10-Logistic Regression
注: 文章中所有的图片均来自台湾大学林轩田<机器学习基石>课程. 笔记原作者:红色石头 微信公众号:AI有道 上一节课介绍了Linear Regression线性回归,用均方误差来寻找最佳 ...
- 机器学习基石 5 Training versus Testing
机器学习基石 5 Training versus Testing Recap and Preview 回顾一下机器学习的流程图: 机器学习可以理解为寻找到 \(g\),使得 \(g \approx f ...
- 机器学习基石 4 Feasibility of Learning
机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接 ...
- 机器学习基石 3 Types of Learning
机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label L ...
- 机器学习基石 2 Learning to Answer Yes/No
机器学习基石 2 Learning to Answer Yes/No Perceptron Hypothesis Set 对于一个线性可分的二分类问题,我们可以采用感知器 (Perceptron)这种 ...
- 机器学习基石 1 The Learning Problem
机器学习基石 1 The Learning Problem Introduction 什么是机器学习 机器学习是计算机通过数据和计算获得一定技巧的过程. 为什么需要机器学习 1 人无法获取数据或者数据 ...
随机推荐
- 制作自己的Pod库(公有/私有)
https://www.jianshu.com/p/ece0b5721461 2018.04.12 16:43* 字数 1168 阅读 244评论 0喜欢 1 目的:1.管理自己常用的类:2.组件化开 ...
- linux环境下vim创建java文件,并编译运行
一.前提 安装Java 二.创建工作目录并编辑java文件 三.编译 四.运行
- python监控机器(第1版)
# coding:utf-8 import configparser import logging import os import psutil import ctypes import platf ...
- http请求方式和传递数据类型
HTTP(HyperText Transfer Protocol)是一套计算机通过网络进行通信的规则. GET,通过请求URI得到资源 POST,用于添加新的内容 PUT用于修改某个内容 DELETE ...
- Hadoop系列(二):Hadoop单节点部署
环境:CentOS 7 JDK: 1.7.0_80 hadoop:2.8.5 hadoop(192.168.56.101) 配置基础环境 1. 测试环境可以直接关闭selinux和防火墙 2. 主机添 ...
- 【CF715E】Complete the Permutations 第一类斯特林数
题目大意 有两个排列 \(p,q\),其中有一些位置是空的. 你要补全这两个排列. 定义 \(s(p,q)\) 为 每次交换 \(p\) 中的两个数,让 \(p=q\) 的最小操作次数. 求 \(s( ...
- Linux keepalived+nginx实现主从模式
双机高可用方法目前分为两种: 主从模式:一台主服务器和一台从服务器,当配置了虚拟vip的主服务器发送故障时,从服务器将自动接管虚拟ip,服务将不会中断.但主服务器不出现故障的时候,从服务器永远处于浪费 ...
- Python基础7:字符串方法
1 * 重复输出字符串 print('helo '*4) 2 [],[:] 通过索引获取字符串中的字符,这里和列表中的切片操作是相同的,具体内容见列表 print('hello word'[2:]) ...
- Linux路径与Win路径的转换
cygpath $ cygpath -p "$WinPath" -u LinuxPath $ cygpath -p "$LinuxPath" -w WinPat ...
- docker核心概念与配置安装
一.Docker的三大核心概念: 镜像(image) 容器(container) 仓库(repository) 1.Docker镜像类是与虚拟机镜像,可以把它理解为一个只读的模板. 不仅仅是操作系统 ...