牛客网NOIP赛前集训营-提高组(第六场)B-选择题[背包]
题意
分析
直接背包之后可以 \(O(n)\) 去除一个物品的影响。
注意特判 \([p==1]\) 的情况。
总时间复杂度为 \(O(n^2)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=2004,mod=998244353;
int n;
LL p[4][N],w[4][4],f[N],tmp[N],ans[N];
LL Pow(LL a,LL b){
LL res=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) res=res*a%mod;
return res;
}
void solve(int k){
memset(f,0,sizeof f);
f[0]=1;
rep(i,1,n){
LL p=::p[k][i];
for(int j=n;~j;--j)
f[j]=((j-1>=0?f[j-1]:0)*p+f[j]*(1-p))%mod;
}
rep(i,1,n){
LL p=::p[k][i];
LL inv=Pow(1-p,mod-2);
if(p^1){
tmp[0]=f[0]*inv%mod;
rep(j,1,n) tmp[j]=(f[j]-.tmp[j-1]*p)%mod*inv%mod;
}else
rep(j,0,n-1) tmp[j]=f[j+1];
LL sum=0;
for(int j=n/2+1;j<n;++j) (sum+=tmp[j])%=mod;
rep(a,0,3)
(ans[i]+=(sum+(k==a)*tmp[n/2])*::p[a][i]%mod*w[k][a]%mod)%=mod;
}
}
int main(){
n=gi();
rep(i,1,n) rep(j,0,3) p[j][i]=gi();
rep(i,0,3) rep(j,0,3) w[i][j]=gi();
rep(k,0,3) solve(k);
rep(i,1,n) printf("%lld\n",(ans[i]+mod)%mod);
return 0;
}
牛客网NOIP赛前集训营-提高组(第六场)B-选择题[背包]的更多相关文章
- 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告
目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...
- 牛客网NOIP赛前集训营-提高组(第二场)A 方差
链接:https://www.nowcoder.com/acm/contest/173/A来源:牛客网 题目描述 一个长度为 m 的序列 b[1...m] ,我们定义它的方差为 ,其中 表示序列的平 ...
- [牛客网NOIP赛前集训营-提高组(第一场)]C.保护
链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...
- 牛客网NOIP赛前集训营-提高组(第一场)
牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...
- 比赛总结——牛客网 NOIP赛前集训营提高组模拟第一场
第一场打的很惨淡啊 t1二分+前缀最小值没想出来,20分的暴力也挂了,只有10分 t2数位dp,调了半天,结果因为忘了判0的特殊情况WA了一个点,亏死 t3emmmm.. 不会 imone说是DSU ...
- 牛客网NOIP赛前集训营-提高组(第一场)B 数数字
数数字 思路: 数位dp 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...
- 牛客网NOIP赛前集训营-提高组(第一场)A 中位数
中位数 思路: 二分答案 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...
- 牛客网NOIP赛前集训营 提高组 第5场 T2 旅游
[题解] 我们可以发现不在最小生成树上的边一定不能多次经过,因为一条不在最小生成树上的边(u,v)的边权比最小生成树上(u,v)之间的路径更长,选择不在最小生成树上的边一定不划算. 我们还需要确定最小 ...
- 牛客网NOIP赛前集训营-提高组(第四场)游记
牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...
- 牛客网NOIP赛前集训营-提高组(第四场)B区间
牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1 \dots a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...
随机推荐
- 如何制作 Objective-C 的UML图 [1]
如何制作 Objective-C 的UML图 [1] 说明 本教程旨在教你如何制作 Objective-C 的UML图,此为第一部分. 步骤 注册(在线制作) https://www.processo ...
- [翻译] snapshotViewAfterScreenUpdates
snapshotViewAfterScreenUpdates This method very efficiently captures the current rendered appearance ...
- CDN高级技术专家周哲:深度剖析短视频分发过程中的用户体验优化技术点
深圳云栖大会已经圆满落幕,在3月29日飞天技术汇-弹性计算.网络和CDN专场中,阿里云CDN高级技术专家周哲为我们带来了<海量短视频极速分发>的主题分享,带领我们从视频内容采集.上传.存储 ...
- (z转)基于CPU的Bank BRDF经验模型,实现各向异性光照效果!
摘抄“GPU Programming And Cg Language Primer 1rd Edition” 中文 名“GPU编程与CG语言之阳春白雪下里巴人” BRDF 光照模型 10.2.1 什么 ...
- Zabbix日常监控之lvs监控
参考博文:http://blog.51cto.com/kaibinyuan/1711863 监控环境的搭建请参考:https://www.cnblogs.com/huangyanqi/p/918780 ...
- session过期,拦截ajax请求并跳转登录页面
1.方法一 :1.1使用filter 和ajaxsetup 对ajax进行拦截并跳转登录页面 public void doFilter(ServletRequest request, ServletR ...
- js(window.open)浏览器弹框居中显示
<span style="background-color: rgb(204, 204, 204);"><html> <meta name=" ...
- Docker实战(一)之使用Docker镜像
镜像是Docker三大核心概念中最为重要的,自Docker诞生之日起“镜像”就是相关社区最为热门的关键字. Docker运行容器前需要本地存在对应的镜像,如果镜像没有保存至本地,Docker会尝试先从 ...
- html手机网页自适应宽度
#在head之间加如下代码即可 <meta name="viewport" content="width=device-width, initial-scale=1 ...
- 记录一下iOS Leak的使用方法。
观测过程中不需要使用xcode.只需观察Leak工具即可 1:选中Xcode,点击左上角的Xcode.找到tool 然后找到instrument.如下图 2:打开instrument 找到Leak ...