Spark报错处理

1、问题:org.apache.spark.SparkException: Exception thrown in awaitResult

分析:出现这个情况的原因是spark启动的时候设置的是hostname启动的,导致访问的时候DNS不能解析主机名导致。

问题解决:

第一种方法:确保URL是spark://服务器ip:7077,而不是spark://hostname:7077;启动的时候指定-h  ip地址

第二种方法:修改主机的host文件添加主机的解析记录(推荐这种方式)

Ip     主机名

第三种方法:hive.metastore.try.direct.sql: false         (in hive-site.xml)

2、spark2.x版本使用hive,即copy一份hive-site.xml文件到spark2.x的conf目录下。

使用spark的bin目录下的spark-sql进入终端时总提示一个warning:

Thu Jun 15 12:56:05 CST 2017 WARN: Establishing SSL connection without server's identity verification is not recommended. According to MySQL 5.5.45+, 5.6.26+ and 5.7.6+ requirements SSL connection must be established by default if explicit option isn't set. For compliance with existing applications not using SSL the verifyServerCertificate property is set to 'false'. You need either to explicitly disable SSL by setting useSSL=false, or set useSSL=true and provide truststore for server certificate verification.

解决方法:

修改hive-site.xml文件下的mysql连接的url,设置useSSL=false。由于hive-site.xml文件采用的是xml格式,所以不支持直接使用&连接,需要使用&进行连接。

<value>jdbc:mysql://localhost:3306/metastore?createDatabaseIfNotExist=true&amp;useSSL=false</value>

 

重启spark即可,

#../sbin/stop-all.sh

#../sbin/start-all.sh

 

 

3、 问题:

Spark运行了一段时间,数据量上来以后,出现了一个这样的报错:

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

   at java.lang.Thread.run(Thread.java:745)

17/10/26 20:29:00 ERROR Executor: Exception in task 39.1 in stage 8.0 (TID 1122)

java.io.FileNotFoundException: /tmp/spark-2de5fa03-a7cb-47a2-9540-403de85d0371/executor-eebecccb-4cdb-4b85-80a3-73c4baa4c7bd/blockmgr-fc644c14-23e8-401c-aee8-00bc108bf607/2b/temp_shuffle_75eb7338-be41-41b4-bed4-5dcb0c1d0fdf (No space left on device)

   at java.io.FileOutputStream.open0(Native Method)

   at java.io.FileOutputStream.open(FileOutputStream.java:270)

   at java.io.FileOutputStream.<init>(FileOutputStream.java:213)

   at org.apache.spark.storage.DiskBlockObjectWriter.initialize(DiskBlockObjectWriter.scala:102)

   at org.apache.spark.storage.DiskBlockObjectWriter.open(DiskBlockObjectWriter.scala:115)

   at org.apache.spark.storage.DiskBlockObjectWriter.write(DiskBlockObjectWriter.scala:235)

   at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:151)

   at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)

   at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)

   at org.apache.spark.scheduler.Task.run(Task.scala:108)

   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)

   at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

   at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

at java.lang.Thread.run(Thread.java:745)

 

从日志报错来看说是没有空间了,spark默认是把临时文件存放到/tmp目录下。需要修改啊!!!放到一个大存储的地方:

 

解决方法:

修改spark-env.sh

export SPARK_DRIVER_MEMORY=5g

export SPARK_LOCAL_DIRS=/data/sparktmp

 

不要添加到spark-defaault.conf里面去,因为spark从1.0版本已经放弃了spark.local.dir参数。

 

源码分析:

(1) DiskBlockManager类中的下面的方法

通过日志我们最终定位这块出现的错误

/**

* Create local directories for storing block data. These directories are

* located inside configured local directories and won't

* be deleted on JVM exit when using the external shuffle service.

*/

private def createLocalDirs(conf: SparkConf): Array[File] = {

Utils.getConfiguredLocalDirs(conf).flatMap { rootDir =>

try {

val localDir = Utils.createDirectory(rootDir, "blockmgr")

logInfo(s"Created local directory at $localDir")

Some(localDir)

} catch {

case e: IOException =>

logError(s"Failed to create local dir in $rootDir. Ignoring this directory.", e)

None

}

}

}

(2) SparkConf.scala 类中的方法

这个方法告诉我们在spark-defaults.conf 中配置spark.local.dir参数在spark1.0 版本后已经过时。

/** Checks for illegal or deprecated config settings. Throws an exception for the former. Not

* idempotent - may mutate this conf object to convert deprecated settings to supported ones. */

private[spark] def validateSettings() {

if (contains("spark.local.dir")) {

val msg = "In Spark 1.0 and later spark.local.dir will be overridden by the value set by " +

"the cluster manager (via SPARK_LOCAL_DIRS in mesos/standalone and LOCAL_DIRS in YARN)."

logWarning(msg)

}

val executorOptsKey = "spark.executor.extraJavaOptions"

val executorClasspathKey = "spark.executor.extr

。。。。

}

(3)Utils.scala 类中的方法

通过分析下面的代码,我们发现不在spark-env.sh 下配置SPARK_LOCAL_DIRS的情况下,

通过该conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(",")设置spark.local.dir,然后或根据路径创建,导致上述错误。

故我们直接在spark-env.sh 中设置SPARK_LOCAL_DIRS 即可解决。

然后我们直接在spark-env.sh 中配置:

export SPARK_LOCAL_DIRS=/home/hadoop/data/sparktmp

/**

* Return the configured local directories where Spark can write files. This

* method does not create any directories on its own, it only encapsulates the

* logic of locating the local directories according to deployment mode.

*/

def getConfiguredLocalDirs(conf: SparkConf): Array[String] = {

val shuffleServiceEnabled = conf.getBoolean("spark.shuffle.service.enabled", false)

if (isRunningInYarnContainer(conf)) {

// If we are in yarn mode, systems can have different disk layouts so we must set it

// to what Yarn on this system said was available. Note this assumes that Yarn has

// created the directories already, and that they are secured so that only the

// user has access to them.

getYarnLocalDirs(conf).split(",")

} else if (conf.getenv("SPARK_EXECUTOR_DIRS") != null) {

conf.getenv("SPARK_EXECUTOR_DIRS").split(File.pathSeparator)

} else if (conf.getenv("SPARK_LOCAL_DIRS") != null) {

conf.getenv("SPARK_LOCAL_DIRS").split(",")

} else if (conf.getenv("MESOS_DIRECTORY") != null && !shuffleServiceEnabled) {

// Mesos already creates a directory per Mesos task. Spark should use that directory

// instead so all temporary files are automatically cleaned up when the Mesos task ends.

// Note that we don't want this if the shuffle service is enabled because we want to

// continue to serve shuffle files after the executors that wrote them have already exited.

Array(conf.getenv("MESOS_DIRECTORY"))

} else {

if (conf.getenv("MESOS_DIRECTORY") != null && shuffleServiceEnabled) {

logInfo("MESOS_DIRECTORY available but not using provided Mesos sandbox because " +

"spark.shuffle.service.enabled is enabled.")

}

// In non-Yarn mode (or for the driver in yarn-client mode), we cannot trust the user

// configuration to point to a secure directory. So create a subdirectory with restricted

// permissions under each listed directory.

conf.get("spark.local.dir", System.getProperty("java.io.tmpdir")).split(",")

}

}

3、Join condition is missing or trivial.Use the CROSS JOIN syntax to allow cartesian products between these relations.;

解决方法:

spark.sql.crossjoin.enabled: true

4、Caused by: org.codehaus.janino.JaninoRuntimeException: Code of method "eval(Lorg/apache/spark/sql/catalyst/InternalRow;)Z" of class "org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificPredicate" grows beyond 64 KB

解决方法:

spark.sql.codegen.wholeStage : false

5、java.lang.OutOfMemoryError: Java heap space

解决方法:

spark.driver.memory : 10g   <to a higher-value>

spark.sql.ui.retainedExecutions: 5   <to some lower-value>

spark报错处理的更多相关文章

  1. spark报错:invalid token

    启动spark报错,启动container失败,去看yarn的日志,显示invalid token, 经过排查是hadoop子节点的配置和主节点的配置不一致导致的,同步之后,问题解决.

  2. spark-shell启动spark报错

    前言 离线安装好CDH.Coudera Manager之后,通过Coudera Manager安装所有自带的应用,包括hdfs.hive.yarn.spark.hbase等应用,过程很是波折,此处就不 ...

  3. Spark报错java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.

    Spark 读取 JSON 文件时运行报错 java.io.IOException: Could not locate executable null\bin\winutils.exe in the ...

  4. 安装spark 报错:java.io.IOException: Could not locate executable E:\hadoop-2.7.7\bin\winutils.exe

    打开 cmd 输入 spark-shell 虽然可以正常出现 spark 的标志符,但是报错:java.io.IOException: Could not locate executable E:\h ...

  5. spark报错 java.lang.NoClassDefFoundError: scala/xml/MetaData

    代码: 报错信息: java.lang.NoClassDefFoundError: scala/xml/MetaData 原因:确失jar包 <dependency> <groupI ...

  6. Spark记录-spark报错Unable to load native-hadoop library for your platform

    解决方案一: #cp $HADOOP_HOME/lib/native/libhadoop.so  $JAVA_HOME/jre/lib/amd64 #源码编译snappy---./configure  ...

  7. Spark报错:Failed to locate the winutils binary in the hadoop binary path

    之前在mac上调试hadoop程序(mac之前配置过hadoop环境)一直都是正常的.因为工作需要,需要在windows上先调试该程序,然后再转到linux下.程序运行的过程中,报 Failed to ...

  8. window 运行spark报错

    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties // :: ERROR Shell: F ...

  9. spark 报错 InvalidClassException: no valid constructor

    2019-03-19 02:50:24 WARN TaskSetManager:66 - Lost task 1.0 in stage 0.0 (TID 1, 1.2.3.4, executor 1) ...

随机推荐

  1. [jquery-ajax] jquery ajax 三种情况对比

    <button class="btn1">async:false</button> <button class="btn2"> ...

  2. pl/sql 语言设置

    1.select * from v$nls_parameters 查询nls的参数,获得数据库服务器端的字符编码 NLS_LANGUAGE NLS_CHARACTERSET 2.修改本地环境变量 NL ...

  3. 【转】如何使用BehaviorSDK

    原文地址:http://blogs.msdn.com/b/windows8devsupport/archive/2014/10/24/behaviorsdk.aspx 前言 在开发过程中,程序员一般通 ...

  4. Ubuntu14.04下Pycharm3.4 字体渲染

    在ubuntu下搭建了django的开发环境,搭建过程十分简单,Pycharm的安装更简单,下载tar包解压并执行bin目录下的脚本即可,但是看着那个字体真心不爽.于是开始搜索调教. 1.安装打了渲染 ...

  5. [翻译]NUnit---TestCase Attributes(二十一)

    TestCaseAttribute (NUnit 2.5) TestCase特性有两个效果,包括标记一个方法使用参数并且在调用的时候提供内置数据.示例如下,本示例会使用不同数据集执行3次: [Test ...

  6. [翻译]NUnit---Sequential and SetCulture and SetUICulture Attributes(十八)

    Sequential特性用于在测试用例上指定NUnit通过为测试提供的参数选择单一值生产测试用例,并且不会生产额外的组合. Note:如果参数数据由多个特性提供,那么NUnit使用数据项的顺序是随机的 ...

  7. 利用ligerUI隐藏某列,并不产生空白列的方法

    var grid;//声明变量 $(function () { //grid初始化 grid = $("#maingrid4").ligerGrid({ columns: [ { ...

  8. 终于,我们的新产品Fotor Slideshow Maker上线了!!

    辛苦了大半年,使用纯网页技术全新打造的首个交互式Slideshow产品终于上线了,现在是 http://slideshow.fotor.com,希望能尽快推出中文版! http://blog.foto ...

  9. Mac OS 10.12 - 在VMwear Workstation12.5.2中大写键和中英文输入法的切换!

    大小写切换: Alt+CapsLock(不过必须在英文状态下)!! 输入法切换: CapsLock进行中英文输入法的切换

  10. Mysql数据库一:安装与创建windows服务

    Mysql数据库安装与创建windows服务 1.先下载压缩包(mysql-5.7.18-winx64.zip)移动到对应目录(如D:\software)后解压. 2.安装服务端: mysqld:带d ...