1049. Mondriaan

Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One day, while working on his latest project, he was intrigued by the number of different ways in which he could order several objects to fill an arbitrary region. Expert as he was in this material, he saw at a glance that this was going to be too hard, for there seemed to be innumerable ways to do this. To make his task a little easier, he decided to start with only two kinds of objects: squares with width 1 and height 1, and rectangles with width 2 and height 1. After working on it for half an hour, he knew that even this was too much, for all of his paper was filled with pages like this. The only paper left was his toilet paper, and strange as it now seems, he continued with his task. Fortunately the width of the toilet paper equaled the width of the rectangle, which simplified things a lot. This seemed to do just fine, for in a few minutes time, he produced the following drawing:

             
             

Mondriaan decided to make several of these drawings, each on a piece of toilet paper with a different length. He wanted to give the drawings in his ‘toilet series’ names according to the last digit of the number of ways to fill a piece of toilet paper of a particular length with squares and rectangles. Computers might come in handy in cases like this, so your task is to calculate the name of the drawing, given the length of the toilet paper. The length will be measured in the same dimension as the squares and rectangles.

Input

The input consists of a line containing the number N (1≤N≤100) of drawings in the series. Each consecutive line consists of a number L (0≤L≤1000000) which is the length of the piece of toilet paper used for the drawing.

Output

The output consists of the number that is the name for the corresponding drawing.

Sample Input

5
0
1
2
3
4

Sample Output

1
2
7
2
1

这道题与hdu1992.Tiling a Grid With Dominoes非常类似。也是铺地板的动态规划问题。

注意分析:

1.铺满2*1时,

共有两种情况

2.铺满2*2时,且不和上面情况重复的有3种,

共有3种情况

3.当i >= 3 时,我们又不想与上面的情况重复,那么只有选择突出一个的情况,也就是永远只能靠小正方形来填满的情况:

共有2种情况

因此得到通项:dp[i] = 2*dp[i-1] + 3*dp[i-2] + 2*(dp[i-3]+dp[i-4]+dp[i-5]+......+dp[1] + dp[0])

然后再类比dp[i-1]的式子,消参即可得到简化式子。

#include <iostream>
#include <memory.h>
using namespace std; int dp[1000002];
int main()
{
int i;
dp[0] = 1;
dp[1] = 2;
dp[2] = 7;
for(i = 3;i <= 1000000;i++)
{
dp[i] = (3*dp[i-1] + dp[i-2] - dp[i-3] + 10) % 10; //这里值得注意
}
int N;
cin >> N;
while(N--)
{
int a;
cin >> a;
cout << dp[a] << endl;
}
return 0;
}

soj1049.Mondriaan的更多相关文章

  1. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  2. POJ 题目2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 13519   Accepted: 787 ...

  3. POJ 2411 Mondriaan&#39;s Dream

    状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...

  4. POJ2411 Mondriaan's Dream

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

  5. 状压DP POJ 2411 Mondriaan'sDream

    题目传送门 /* 题意:一个h*w的矩阵(1<=h,w<=11),只能放1*2的模块,问完全覆盖的不同放发有多少种? 状态压缩DP第一道:dp[i][j] 代表第i行的j状态下的种数(状态 ...

  6. HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)

    Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...

  7. poj 2411 Mondriaan's Dream(状态压缩dp)

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

  8. poj 2411 Mondriaan&#39;s Dream 【dp】

    题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...

  9. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

随机推荐

  1. STM32F103 CAN中断发送功能的再次讨论

    转自:http://yiyutingmeng.blog.163.com/blog/static/124258578201191584629146/ 我在之前的一篇博客日志中,写过关于CAN发送功能如何 ...

  2. javascript 组件化(转载)

    这边只是很简陋的实现了类的继承机制.如果对类的实现有兴趣可以参考我另一篇文章javascript oo实现 我们看下使用方法: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  3. Python入门:条件控制

    条件控制其实就是if...else...(如果...条件是成立的,就做...:反之,就做...)的使用,其基本结构是: 具体看下面这个例子: def account_login(): # 定义函数 p ...

  4. Jaxb2实现JavaBean与xml互转的方法详解

    本文实例讲述了Jaxb2实现JavaBean与xml互转的方法.分享给大家供大家参考,具体如下: 一.简介 JAXB(Java Architecture for XML Binding) 是一个业界的 ...

  5. 3 vue-router 的默认hash 改mode:history去除#号 传参

    npm install vue-router --save      //安装 传参

  6. 微信小程序组件 下拉刷新

    <!-- &&底部加载 --> <view class='page-add-data flexca'> <text>{{pageTottomText ...

  7. equals比较对象

    object类的equals方法用来比较是否是同一个对象,比较内存地址. jdk中有些类重写了equals方法,只要类型,内容相同,就相等. 类如果涉及到比较应该重写equals方法,比较内存地址没有 ...

  8. forEach遍历数组对象且去重

    forEach遍历数组对象 var obj1 = [{ key: '01', value: '哈哈' }, { key: '02', value: '旺旺' }, { key: '03', value ...

  9. myeclipse8.6 注册码

    MyEclipse8.6 注册码 别处找的均是8.6版本,可以使用到2014年一:MyEclipse Standard Edition: zhucemLR7ZL-655954-695876566190 ...

  10. 【Java并发编程】之一:可重入内置锁

    每个Java对象都可以用做一个实现同步的锁,这些锁被称为内置锁或监视器锁.线程在进入同步代码块之前会自动获取锁,并且在退出同步代码块时会自动释放锁.获得内置锁的唯一途径就是进入由这个锁保护的同步代码块 ...