soj1049.Mondriaan
1049. Mondriaan
Constraints
Time Limit: 1 secs, Memory Limit: 32 MB
Description
Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One day, while working on his latest project, he was intrigued by the number of different ways in which he could order several objects to fill an arbitrary region. Expert as he was in this material, he saw at a glance that this was going to be too hard, for there seemed to be innumerable ways to do this. To make his task a little easier, he decided to start with only two kinds of objects: squares with width 1 and height 1, and rectangles with width 2 and height 1. After working on it for half an hour, he knew that even this was too much, for all of his paper was filled with pages like this. The only paper left was his toilet paper, and strange as it now seems, he continued with his task. Fortunately the width of the toilet paper equaled the width of the rectangle, which simplified things a lot. This seemed to do just fine, for in a few minutes time, he produced the following drawing:
Mondriaan decided to make several of these drawings, each on a piece of toilet paper with a different length. He wanted to give the drawings in his ‘toilet series’ names according to the last digit of the number of ways to fill a piece of toilet paper of a particular length with squares and rectangles. Computers might come in handy in cases like this, so your task is to calculate the name of the drawing, given the length of the toilet paper. The length will be measured in the same dimension as the squares and rectangles.
Input
The input consists of a line containing the number N (1≤N≤100) of drawings in the series. Each consecutive line consists of a number L (0≤L≤1000000) which is the length of the piece of toilet paper used for the drawing.
Output
The output consists of the number that is the name for the corresponding drawing.
Sample Input
5
0
1
2
3
4
Sample Output
1
2
7
2
1
这道题与hdu1992.Tiling a Grid With Dominoes非常类似。也是铺地板的动态规划问题。
注意分析:
1.铺满2*1时,
共有两种情况
2.铺满2*2时,且不和上面情况重复的有3种,
共有3种情况
3.当i >= 3 时,我们又不想与上面的情况重复,那么只有选择突出一个的情况,也就是永远只能靠小正方形来填满的情况:
共有2种情况
因此得到通项:dp[i] = 2*dp[i-1] + 3*dp[i-2] + 2*(dp[i-3]+dp[i-4]+dp[i-5]+......+dp[1] + dp[0])
然后再类比dp[i-1]的式子,消参即可得到简化式子。
#include <iostream>
#include <memory.h>
using namespace std; int dp[1000002];
int main()
{
int i;
dp[0] = 1;
dp[1] = 2;
dp[2] = 7;
for(i = 3;i <= 1000000;i++)
{
dp[i] = (3*dp[i-1] + dp[i-2] - dp[i-3] + 10) % 10; //这里值得注意
}
int N;
cin >> N;
while(N--)
{
int a;
cin >> a;
cout << dp[a] << endl;
}
return 0;
}
soj1049.Mondriaan的更多相关文章
- [poj2411] Mondriaan's Dream (状压DP)
状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...
- POJ 题目2411 Mondriaan's Dream(状压DP)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 13519 Accepted: 787 ...
- POJ 2411 Mondriaan's Dream
状压DP Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 9938 Accepted: 575 ...
- POJ2411 Mondriaan's Dream
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- 状压DP POJ 2411 Mondriaan'sDream
题目传送门 /* 题意:一个h*w的矩阵(1<=h,w<=11),只能放1*2的模块,问完全覆盖的不同放发有多少种? 状态压缩DP第一道:dp[i][j] 代表第i行的j状态下的种数(状态 ...
- HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)
Mondriaan's Dream Problem Description Squares and rectangles fascinated the famous Dutch painter Pie ...
- poj 2411 Mondriaan's Dream(状态压缩dp)
Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...
- poj 2411 Mondriaan's Dream 【dp】
题目:id=2411" target="_blank">poj 2411 Mondriaan's Dream 题意:给出一个n*m的矩阵,让你用1*2的矩阵铺满,然 ...
- POJ2411 Mondriaan's Dream(状态压缩)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 15295 Accepted: 882 ...
随机推荐
- 深入理解JAVA集合系列一:HashMap源码解读
初认HashMap 基于哈希表(即散列表)的Map接口的实现,此实现提供所有可选的映射操作,并允许使用null值和null键. HashMap继承于AbstractMap,实现了Map.Cloneab ...
- git常用命令复习及其基本使用示例
年后回来新上到项目,对于git的一些操作命令记得有点混乱了,所以特整理笔记如下: 一.git常用命令复习 查看当前分支:git branch (显示结果中带有*号的是当前分支)查看所有分支: git ...
- aes python加密
# *_*coding:utf-8 *_* #AES-demo import base64 from Crypto.Cipher import AES ''' 采用AES对称加密算法 ''' # st ...
- Window下JDK安装教程
1.准备 win10系统,其他windows系统安装过程大同小异官网下载jdk1.8下载地址:https://www.oracle.com/technetwork/java/javase/downlo ...
- 微信小程序组件 滚动导航
JS data: { // 初始化滑动条数据 menuIndex:0, // 每个菜单的宽度 onlyWidth: 70, // 右侧的margin marginWidth:10, // 菜单总长 m ...
- 为什么选择 .NET Core?
为什么选择.NETCore? 学习新的开发框架是一项巨大的投资.您需要学习如何在新框架中编写,构建,测试,部署和维护应用程序.作为开发人员,有许多框架可供选择,很难知道什么是最适合的.即使您正在使用 ...
- 开源自己实现一个.net rpc框架 - Machete.Rpc
Machete.Rpc Machete.Rpc 是一个轻量级的Rpc(远程过程调用的)框架.底层代理使用了Emit提高了效率,底层通信采用DotNetty框架以提升通信的效率.目前正在逐步完善中. G ...
- 一文总结之MyBatis
目录 MyBatis 目标 MyBatis演示 Configuration.xml 映射文件 初始化配置文件 Dao Spring与MyBatis集成 pom Spring配置文件 MyBatis配置 ...
- 测试人员如何"提问"
本文打算谈谈QA如何高质量的“提问” 写这些的初衷其实比较简单,作为一个测试老鸟,加入了一些很有质量的测试圈子,也在不同的公司带过不少新人,常常会碰到低效率的“提问”,主要表现如下: 1.问题 ...
- MT【136】一道三次函数的最佳逼近问题
已知函数\(f(x)=-x^3-3x^2+(1+a)x+b(a<0,b\in R)\), 若\(|f(x)|\)在\([-2,0]\)上的最大值为\(M(a,b)\),求\(M(a,b)\)的最 ...