from mxnet import gluon
def transform(data, label):
return data.astype('float32') / 255., label.astype('float32') mnist_train = gluon.data.vision.MNIST(train= True, transform= transform)
mnist_test = gluon.data.vision.MNIST(train= False, transform= transform)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8)

下载几个数据集到本地磁盘

cifar_100

cifar_100_train = gluon.data.vision.CIFAR100(root= 'E:/Data/MXNet/cifar100')
cifar_100_test = gluon.data.vision.CIFAR100(root= 'E:/Data/MXNet/cifar100', train= False) def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show() data, label = cifar_100_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/cifar100\cifar-100-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar100/cifar-100-binary.tar.gz...

C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:252: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8).reshape(-1, 3072+2) (8, 32, 32, 3) [15 4 14 1 5 18 3 10]

cifar-10

cifar_10_train = gluon.data.vision.CIFAR10(root= 'E:/Data/MXNet/cifar10')
cifar_10_test = gluon.data.vision.CIFAR10(root= 'E:/Data/MXNet/cifar10', train= False) def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show() data, label = cifar_10_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/cifar10\cifar-10-binary.tar.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/cifar10/cifar-10-binary.tar.gz...

C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:193: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8).reshape(-1, 3072+1) (8, 32, 32, 3) [9 9 4 1 1 2 7 8]

mnist_train

mnist_train = gluon.data.vision.MNIST(root= 'E:/Data/MXNet/mnist')
mnist_test = gluon.data.vision.MNIST(root= 'E:/Data/MXNet/mnist', train= False) def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show() data, label = mnist_train[1: 9]
print(data.shape, label)
show_images(data)
Downloading E:/Data/MXNet/mnist\train-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/mnist\train-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/train-labels-idx1-ubyte.gz... C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8) Downloading E:/Data/MXNet/mnist\t10k-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/mnist\t10k-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/mnist/t10k-labels-idx1-ubyte.gz...
(8, 28, 28, 1) [0 4 1 9 2 1 3 1]

Fashion-MNIST

fashion_mnist_train = gluon.data.vision.FashionMNIST(root= 'E:/Data/MXNet/fashion_mnist')
fashion_mnist_test = gluon.data.vision.FashionMNIST(root= 'E:/Data/MXNet/fashion_mnist', train= False) def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show() def get_text_labels(label):
text_labels = [
't-shirt', 'trouser', 'pullover', 'dress,', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'
]
return [text_labels[int(i)] for i in label] data, label = fashion_mnist_train[0:9]
show_images(data)
print(get_text_labels(label))
Downloading E:/Data/MXNet/fashion_mnist\train-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/fashion_mnist\train-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/train-labels-idx1-ubyte.gz... C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:118: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
label = np.fromstring(fin.read(), dtype=np.uint8).astype(np.int32)
C:\Anaconda3\lib\site-packages\mxnet\gluon\data\vision.py:122: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead
data = np.fromstring(fin.read(), dtype=np.uint8) Downloading E:/Data/MXNet/fashion_mnist\t10k-images-idx3-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/t10k-images-idx3-ubyte.gz...
Downloading E:/Data/MXNet/fashion_mnist\t10k-labels-idx1-ubyte.gz from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/dataset/fashion-mnist/t10k-labels-idx1-ubyte.gz...

['pullover', 'ankle boot', 'shirt', 't-shirt', 'dress,', 'coat', 'coat', 'sandal', 'coat']

MXNet 中的几个数据集的更多相关文章

  1. PyTorch中的MIT ADE20K数据集的语义分割

    PyTorch中的MIT ADE20K数据集的语义分割 代码地址:https://github.com/CSAILVision/semantic-segmentation-pytorch Semant ...

  2. 将 Book-Crossing Dataset 书籍推荐算法中 CVS 格式测试数据集导入到MySQL数据库

    本文内容 最近看<写给程序员的数据挖掘指南>,研究推荐算法,书中的测试数据集是 Book-Crossing Dataset 提供的亚马逊用户对书籍评分的真实数据.推荐大家看本书,写得不错, ...

  3. birt报表中使用多个数据集。

    这个问题困扰了几天,也没搜到答案,由于工作需要,创建了两个数据集和两个表格,第一个数据集和表格之间没有任何问题.但是第二个数据集拖过去就显示不可用,除非拖到表格外面,当然也就没用了.一朋友说拖一个网格 ...

  4. Delphi中JSon SuperObject 使用:数据集与JSON对象互转

    在delphi中,数据集是最常用数据存取方式.因此,必须建立JSON与TDataSet之间的互转关系,实现数据之间通讯与转换.值得注意的是,这只是普通的TDataset与JSON之间转换,由于CDS包 ...

  5. MXNet 中的 hybird_forward 的一个使用技巧

    from mxnet.gluon import nn from mxnet import nd class SliceLike(nn.HybridBlock): def __init__(self, ...

  6. FineReport中如何制作树数据集来实现组织树报表

    1. 问题描述 FineReport,组织树报表中由id与父id来实现组织树报表,若层级数较多时,对每个单元格设置过滤条件和形态会比较繁琐,因此FineReport提供了一种特殊的数据集——树数据集, ...

  7. 如何在nlp问题中定义自己的数据集

    我之前大致写了一篇在pytorch中如何自己定义数据集合,在这里如何自定义数据集 不过这个例子使用的是image,也就是图像.如果我们用到的是文本呢,处理的是NLP问题呢? 在解决这个问题的时候,我在 ...

  8. 关于无法下载sklearn中的MNIST original数据集的问题

    在使用Sklearn进行加载自带的数据集MNIST时,总是报错,代码及相应的错误显示如下: from sklearn.datasets import fetch_mldata mnist = fetc ...

  9. mxnet卷积神经网络训练MNIST数据集测试

    mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...

随机推荐

  1. Elasticsearch技术解析与实战(二)文档的CRUD操作

    启动Elasticsearch和kibana 访问Elasticsearch:http://localhost:9200/?pretty 访问kibana:http://localhost:5601 ...

  2. 自定义模板类型vs模板类型自动推测

    [自定义模板类型vs模板类型自动推测] GCC在编译时,先确定看是否人工定义了模板的类型,如果定义了,则看传递的参数是否能转换成定义后的类型,如果没定义,则根据参数确定定义的类型. 1. 是否人工定义 ...

  3. IE6 下 DD_belatedPNG 引发的血案

    群里一朋友Q我,说遇到兼容性问题了,我说为何不用jQuery呢(因为他们公司要求尽量js写).他说用了,还是有问题,IE6下不行,其他都行.然后他发我代码,我一开始真以为是兼容性问题,比如数组对象最后 ...

  4. [NOIP提高&洛谷P1024]一元三次方程求解 题解(二分答案)

    [NOIP提高&洛谷P1024]一元三次方程求解 Description 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约 ...

  5. Anaconda+django写出第一个web app(三)

    前面我们已经建立了模型Tutorial,也已经可以用Navicat Premium打开数据看查看数据,接下来我们通过建立admin账户来上传数据. 在命令行执行如下命令来创建用户: python ma ...

  6. 【译】第六篇 Integration Services:初级工作流管理

    本篇文章是Integration Services系列的第六篇,详细内容请参考原文. 简介在前几篇文章中,我们关注使用增量加载方式加载数据.在本篇文章,我们将关注使用优先约束管理SSIS控制流中的工作 ...

  7. 【CTF WEB】文件包含

    文件包含 题目要求: 请找到题目中FLAG 漏洞源码 <meta charset='utf-8'> <center><h1>文件阅读器</h1>< ...

  8. 音频增益响度分析 ReplayGain 附完整C代码示例【转】

    转自:http://www.cnblogs.com/cpuimage/p/8846951.html 人们所熟知的图像方面的3A算法有: AF自动对焦(Automatic Focus)自动对焦即调节摄像 ...

  9. Tslib移植与分析【转】

    转自:http://blog.csdn.net/water_cow/article/details/7215308 目标平台:LOONGSON-1B开发板(mips32指令集)编译平台:x86PC-- ...

  10. MySQL 导入CSV数据

    第一步 创建表结构 create table t1( key1 ), v1 ) ); 第二步 导入数据 load data local infile 'D:/t1.csv' into table t1 ...