cifar数据集介绍及到图像转换的实现
CIFAR是一个用于普通物体识别的数据集。CIFAR数据集分为两种:CIFAR-10和CIFAR-100。The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.
CIFAR-10由60000张大小为32*32的三通道彩色图像组成,被分为10类,分别为airplane、automobile、bird、cat、deer、dog、frog、horse、ship、truck。每类由6000张图像。其中50000张图像用来训练,10000张图像用来测试。数据集分为5个训练块和1个测试块,每个块包含10000张图像.训练集每类包含5000张图像,测试集每类包含1000张图像.
CIFAR-100由60000张大小为32*32的三通道彩色图像组成,分为20个大类,每个大类又包含5个小类,总共100个小类。每个小类包含600张图像,其中500张用于训练,100张用于测试。
从https://www.cs.toronto.edu/~kriz/cifar.html 下载CIFAR C版本的二进制数据:
(1)、CIFAR-10:下载cifar-10-binary.tar.gz,解压缩,共8个文件,batches.meta.txt中存放10个种类名,data_batch_1.bin… data_batch_5.bin、test_batch.bin共6个文件,每个文件中存放10000张图像数据。
(2)、CIFAR-100:下载cifar-100-binary.tar.gz,解压缩,共5个文件,coarse_label_names.txt中存放20个大类名,fine_label_names.txt中存放100个小类名,train.bin中存放50000张训练图像,test.bin中存放10000张测试图像。
CIFAR数据集到图像转换实现的代码如下:
static void write_image_cifar(const cv::Mat& bgr, const std::string& image_save_path, const std::vector<int>& label_count, int label_class)
{
std::string str = std::to_string(label_count[label_class]);
if (label_count[label_class] < 10) {
str = "0000" + str;
} else if (label_count[label_class] < 100) {
str = "000" + str;
} else if (label_count[label_class] < 1000) {
str = "00" + str;
} else if (label_count[label_class] < 10000) {
str = "0" + str;
} else {
fprintf(stderr, "save image name fail\n");
return;
}
str = std::to_string(label_class) + "_" + str + ".png";
str = image_save_path + str;
cv::imwrite(str, bgr);
}
static void read_cifar_10(const std::string& bin_name, const std::string& image_save_path, int image_count, std::vector<int>& label_count)
{
int image_width = 32;
int image_height = 32;
std::ifstream file(bin_name, std::ios::binary);
if (file.is_open()) {
for (int i = 0; i < image_count; ++i) {
cv::Mat red = cv::Mat::zeros(image_height, image_width, CV_8UC1);
cv::Mat green = cv::Mat::zeros(image_height, image_width, CV_8UC1);
cv::Mat blue = cv::Mat::zeros(image_height, image_width, CV_8UC1);
int label_class = 0;
file.read((char*)&label_class, 1);
label_count[label_class]++;
file.read((char*)red.data, 1024);
file.read((char*)green.data, 1024);
file.read((char*)blue.data, 1024);
std::vector<cv::Mat> tmp{ blue, green, red };
cv::Mat bgr;
cv::merge(tmp, bgr);
write_image_cifar(bgr, image_save_path, label_count, label_class);
}
file.close();
}
}
int CIFAR10toImage()
{
std::string images_path = "E:/GitCode/NN_Test/data/database/CIFAR/CIFAR-10/";
// train image
std::vector<int> label_count(10, 0);
for (int i = 1; i <= 5; i++) {
std::string bin_name = images_path + "data_batch_" + std::to_string(i) + ".bin";
std::string image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-10_train/";
int image_count = 10000;
read_cifar_10(bin_name, image_save_path, image_count, label_count);
}
// test image
std::fill(&label_count[0], &label_count[0] + 10, 0);
std::string bin_name = images_path + "test_batch.bin";
std::string image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-10_test/";
int image_count = 10000;
read_cifar_10(bin_name, image_save_path, image_count, label_count);
// save big imags
images_path = "E:/GitCode/NN_Test/data/tmp/cifar-10_train/";
int width = 32 * 20;
int height = 32 * 10;
cv::Mat dst(height, width, CV_8UC3);
for (int i = 0; i < 10; i++) {
for (int j = 1; j <= 20; j++) {
int x = (j - 1) * 32;
int y = i * 32;
cv::Mat part = dst(cv::Rect(x, y, 32, 32));
std::string str = std::to_string(j);
if (j < 10)
str = "0000" + str;
else
str = "000" + str;
str = std::to_string(i) + "_" + str + ".png";
std::string input_image = images_path + str;
cv::Mat src = cv::imread(input_image, 1);
if (src.empty()) {
fprintf(stderr, "read image error: %s\n", input_image.c_str());
return -1;
}
src.copyTo(part);
}
}
std::string output_image = images_path + "result.png";
cv::imwrite(output_image, dst);
return 0;
}
static void write_image_cifar(const cv::Mat& bgr, const std::string& image_save_path,
const std::vector<std::vector<int>>& label_count, int label_class_coarse, int label_class_fine)
{
std::string str = std::to_string(label_count[label_class_coarse][label_class_fine]);
if (label_count[label_class_coarse][label_class_fine] < 10) {
str = "0000" + str;
} else if (label_count[label_class_coarse][label_class_fine] < 100) {
str = "000" + str;
} else if (label_count[label_class_coarse][label_class_fine] < 1000) {
str = "00" + str;
} else if (label_count[label_class_coarse][label_class_fine] < 10000) {
str = "0" + str;
} else {
fprintf(stderr, "save image name fail\n");
return;
}
str = std::to_string(label_class_coarse) + "_" + std::to_string(label_class_fine) + "_" + str + ".png";
str = image_save_path + str;
cv::imwrite(str, bgr);
}
static void read_cifar_100(const std::string& bin_name, const std::string& image_save_path, int image_count, std::vector<std::vector<int>>& label_count)
{
int image_width = 32;
int image_height = 32;
std::ifstream file(bin_name, std::ios::binary);
if (file.is_open()) {
for (int i = 0; i < image_count; ++i) {
cv::Mat red = cv::Mat::zeros(image_height, image_width, CV_8UC1);
cv::Mat green = cv::Mat::zeros(image_height, image_width, CV_8UC1);
cv::Mat blue = cv::Mat::zeros(image_height, image_width, CV_8UC1);
int label_class_coarse = 0;
file.read((char*)&label_class_coarse, 1);
int label_class_fine = 0;
file.read((char*)&label_class_fine, 1);
label_count[label_class_coarse][label_class_fine]++;
file.read((char*)red.data, 1024);
file.read((char*)green.data, 1024);
file.read((char*)blue.data, 1024);
std::vector<cv::Mat> tmp{ blue, green, red };
cv::Mat bgr;
cv::merge(tmp, bgr);
write_image_cifar(bgr, image_save_path, label_count, label_class_coarse, label_class_fine);
}
file.close();
}
}
int CIFAR100toImage()
{
std::string images_path = "E:/GitCode/NN_Test/data/database/CIFAR/CIFAR-100/";
// train image
std::vector<std::vector<int>> label_count;
label_count.resize(20);
for (int i = 0; i < 20; i++) {
label_count[i].resize(100);
std::fill(&label_count[i][0], &label_count[i][0] + 100, 0);
}
std::string bin_name = images_path + "train.bin";
std::string image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-100_train/";
int image_count = 50000;
read_cifar_100(bin_name, image_save_path, image_count, label_count);
// test image
for (int i = 0; i < 20; i++) {
label_count[i].resize(100);
std::fill(&label_count[i][0], &label_count[i][0] + 100, 0);
}
bin_name = images_path + "test.bin";
image_save_path = "E:/GitCode/NN_Test/data/tmp/cifar-100_test/";
image_count = 10000;
read_cifar_100(bin_name, image_save_path, image_count, label_count);
// save big imags
images_path = "E:/GitCode/NN_Test/data/tmp/cifar-100_train/";
int width = 32 * 20;
int height = 32 * 100;
cv::Mat dst(height, width, CV_8UC3);
std::vector<std::string> image_names;
for (int j = 0; j < 20; j++) {
for (int i = 0; i < 100; i++) {
std::string str1 = std::to_string(j);
std::string str2 = std::to_string(i);
std::string str = images_path + str1 + "_" + str2 + "_00001.png";
cv::Mat src = cv::imread(str, 1);
if (src.data) {
for (int t = 1; t < 21; t++) {
if (t < 10)
str = "0000" + std::to_string(t);
else
str = "000" + std::to_string(t);
str = images_path + str1 + "_" + str2 + "_" + str + ".png";
image_names.push_back(str);
}
}
}
}
for (int i = 0; i < 100; i++) {
for (int j = 0; j < 20; j++) {
int x = j * 32;
int y = i * 32;
cv::Mat part = dst(cv::Rect(x, y, 32, 32));
cv::Mat src = cv::imread(image_names[i * 20 + j], 1);
if (src.empty()) {
fprintf(stderr, "read image fail: %s\n", image_names[i * 20 + j].c_str());
return -1;
}
src.copyTo(part);
}
}
std::string output_image = images_path + "result.png";
cv::imwrite(output_image, dst);
cv::Mat src = cv::imread(output_image, 1);
if (src.empty()) {
fprintf(stderr, "read result image fail: %s\n", output_image.c_str());
return -1;
}
for (int i = 0; i < 4; i++) {
cv::Mat dst = src(cv::Rect(0, i * 800, 640, 800));
std::string str = images_path + "result_" + std::to_string(i + 1) + ".png";
cv::imwrite(str, dst);
}
return 0;
}
cifar-10转换的结果如下:
cifar-100转换的结果如下:
GitHub:https://github.com/fengbingchun/NN_Test
cifar数据集介绍及到图像转换的实现的更多相关文章
- Pascal VOC & COCO数据集介绍 & 转换
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...
- OpenCV 编程简单介绍(矩阵/图像/视频的基本读写操作)
PS. 因为csdn博客文章长度有限制,本文有部分内容被截掉了.在OpenCV中文站点的wiki上有可读性更好.而且是完整的版本号,欢迎浏览. OpenCV Wiki :<OpenCV 编程简单 ...
- 机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集
机器学习数据集,主数据集不能通过,人脸数据集介绍,从r包中获取数据集,中国河流数据集 选自Microsoft www.tz365.Cn 作者:Lee Scott 机器之心编译 参与:李亚洲.吴攀. ...
- Base64图片编码原理,base64图片工具介绍,图片在线转换Base64
Base64图片编码原理,base64图片工具介绍,图片在线转换Base64 DataURI 允许在HTML文档中嵌入小文件,可以使用 img 标签或 CSS 嵌入转换后的 Base64 编码,减少 ...
- caffe之数据集介绍
数据集:http://bigdata.51cto.com/art/201702/531276.htm 计算机视觉 MNIST: 最通用的健全检查.25x25 的数据集,中心化,B&W 手写数字 ...
- 详细介绍Base64的编码转换方式
下面,详细介绍Base64的编码转换方式. 所谓Base64,就是说选出64个字符----小写字母a-z.大写字母A-Z.数字0-9.符号"+"."/"(再加上 ...
- <p><span style="font-size:14px">近期须要批量将PNM格式的文件转换成GIF文件。我尝试了例如以下的图像转换工具:</span></p>
近期须要批量将PNM格式的文件转换成GIF文件.我尝试了例如以下的图像转换工具: ImageBatch:全然免费,但只支持PNG JPEG BMP GIF四种格式 OfficeConverter:在线 ...
- TensorFlow 卷积神经网络手写数字识别数据集介绍
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...
- 将图标LOGO之类的图形图像转换成字体调用方法大全
借鉴百度对此标题的评价: 使用字体图标的优势 字体图标除了图像清晰度之外,比位图还有哪些优势呢. 适用性:一个图标字体比一系列的图像(特别是在Retina屏中使用双倍大小的图像)要小.一旦图标字体加载 ...
随机推荐
- ETL探索之旅
ETL(Ectract Transform Load) 抽取-转换-加载 ETL 商业软件: Informatica IBM DataStage Microsoft SSIS Oracle ODI ...
- [翻译] LiquidFloatingActionButton
LiquidFloatingActionButton https://github.com/yoavlt/LiquidFloatingActionButton LiquidFloatingAction ...
- mysqlDOS命令
MySQL : 1.安装mysql服务:mysqld install 2.删除mysql服务:sc delete mysql 3.启动mysql服务:net start mysql 4.初始化设置密码 ...
- zabbix之自动发现Tomcat多实例(第一种:已经部署完成,后续不再添加;第二种:后续或根据需要添加Tomcat实例)
单一实例手动部署:https://www.cnblogs.com/huangyanqi/p/8522526.html 注释:参考的一位博主的博客后续做的修改,那个博主的网址找不到了!!!! 背景: 1 ...
- Hadoop HBase概念学习系列之行、行键(十一)
行是由列簇中的列组成.行根据行键依照字典顺序排序. HBase的行使用行键标识,可以使用行键查询整行的数据. 对同一个行键的访问都会落在同样的物理节点上.如果表包含2个列簇,属于两个列簇的文件还是保存 ...
- JavaScript创建对象的6种方式
JavaScript创建对象简单的说,无非就是使用内置对象(Object)或各种自定义对象,当然还可以用JSON,但写法有很多种,也能混合使用. 1.对象字面量的方式 person = {name : ...
- echarts中datazoom相关配置
dataZoom=[ //区域缩放 { id: 'dataZoomX', show:true, //是否显示 组件.如果设置为 false,不会显示,但是数据过滤的功能还存在. backgroundC ...
- 1925: [Sdoi2010]地精部落
1925: [Sdoi2010]地精部落 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1929 Solved: 1227 [Submit][Statu ...
- [19/05/03-星期五] GOF23_模式总结
总结:
- 模拟器配置Burpsuite抓取https包
在模拟器中设置代理,长按WiredSSID会弹出菜单: 点击修改网络: 显示高级选项打勾,然后设置代理ip,也就是你运行burp的机器ip: 然后导出burp的证书: 设置保存的路径和文件名: 模拟器 ...