题目

一年一度的圣诞节快要来到了。每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物。不同的人物在小E

心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多。小E从商店中购买了n件礼物,打算送给m个人

,其中送给第i个人礼物数量为wi。请你帮忙计算出送礼物的方案数(两个方案被认为是不同的,当且仅当存在某

个人在这两种方案中收到的礼物不同)。由于方案数可能会很大,你只需要输出模P后的结果。

输入格式

输入的第一行包含一个正整数P,表示模;

第二行包含两个整整数n和m,分别表示小E从商店购买的礼物数和接受礼物的人数;

以下m行每行仅包含一个正整数wi,表示小E要送给第i个人的礼物数量。

输出格式

若不存在可行方案,则输出“Impossible”,否则输出一个整数,表示模P后的方案数。

输入样例

100

4 2

1

2

输出样例

12

提示

【样例说明】

下面是对样例1的说明。

以“/”分割,“/”前后分别表示送给第一个人和第二个人的礼物编号。12种方案详情如下:

1/23 1/24 1/34

2/13 2/14 2/34

3/12 3/14 3/24

4/12 4/13 4/23

【数据规模和约定】

设P=p1^c1 * p2^c2 * p3^c3 * … *pt ^ ct,pi为质数。

对于100%的数据,1≤n≤109,1≤m≤5,1≤pici≤105。

题解

式子很简单,记\(sum[i]\)为w[i]前缀和:

\[ans = {n \choose sum[m]} \prod\limits {sum[m] - sum[i - 1] \choose w[i]}
\]

重点在于计算\(C_{n}^{m} \mod P\),其中\(n,m \le 10^9\)且\(P = p_1^{k_1}*p_2^{k_2}*p_3^{k_3}.....\),其中每一个\(p_i^{k_i} \le 10^5\)

扩展Lucas##

对于质数\(P \le 10^5\),我们可以用Lucas定理计算出

\[C_{n}^{m} = \prod\limits_{i = 1} C_{\lfloor \frac{n}{P^{i - 1}} \rfloor \mod P^i}^{\lfloor \frac{m}{P^{i - 1}} \rfloor \mod P^i}
\]

但对于合数\(P\),Lucas定理就不再适用了

于是我们使用中国剩余定理

\[\left\{
\begin{array}{c}
x\equiv c_1\pmod {m_1}\\
x\equiv c_2\pmod {m_2} \\
x\equiv c_3\pmod {m_3}\\
...\\
x\equiv c_k\pmod {m_k}
\end{array}
\right.\]

显然\(x\)就是答案,用中国剩余定理合并出\(x\)

我们只需要快速计算\(C_{n}^{m} \mod p_i^{k_i}\)

我们只需要快速计算\(n! \mod p_i^{k_i}\)

因为\((a + P) \equiv a \pmod P\)

\[n! = \prod\limits_{i = 1}^{n} i
\]

所以我们对\(n\)个数按\(P\)进行分组并提取出其中\(p_i\)的倍数,假使有\(t\)个

可以得出

\[n! = p_i^{t} * (\prod\limits_{x = 1}^{p_i^{k_i}} x [x \mod p_i \ne 0])^{\frac{n}{p_i^{k_i}}} * (\lfloor \frac{n}{p_i} \rfloor)!
\]

左边是\(O(p_i^{k_i})\)的,右边递归\(\lfloor \frac{n}{p_i} \rfloor\)

我们先提取出\(n,m,n - m\)的\(p_i\),使其结果必定与\(p_i\)

其中\(n!\)中\(p\)的个数为\(x=\lfloor{n\over p}\rfloor+\lfloor{n\over p^2}\rfloor+\lfloor{n\over p^3}\rfloor+...\)

最后结合逆元计算出\(\frac{n!}{m!(n-m)!}\)再乘上\(p_i^{\sum t}\)就行了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL sum;
int md,n,m,a[10];
int p[maxn],pk[maxn],pi,Ans[maxn];
void Sp(){
int x = md;
for (int i = 2; i * i <= x; i++){
if (x % i == 0){
p[++pi] = i; pk[pi] = 1;
while (x % i == 0) x /= i,pk[pi] *= i;
}
}
if (x - 1) ++pi,p[pi] = pk[pi] = x;
}
int qpow(int a,int b,int md){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % md)
if (b & 1) ans = 1ll * ans * a % md;
return ans;
}
void exgcd(int a,int b,int& d,int& x,int& y){
if (!b) {d = a; x = 1; y = 0;}
else exgcd(b,a % b,d,y,x),y -= (a / b) * x;
}
int inv(int a,int P){
int d,x,y; exgcd(a,P,d,x,y);
return (x % P + P) % P;
}
int Fac(int n,int P,int Pi){
if (!n) return 1;
int ans = 1;
if (n / P){
for (int i = 2; i < P; i++)
if (i % Pi) ans = 1ll * ans * i % P;
ans = qpow(ans,n / P,P);
}
int E = n % P;
for (int i = 2; i <= E; i++)
if (i % Pi) ans = 1ll * ans * i % P;
return 1ll * ans * Fac(n / Pi,P,Pi) % P;
}
int C(int n,int m,int P,int pi){
if (m > n) return 0;
int a = Fac(n,P,pi),b = Fac(m,P,pi),c = Fac(n - m,P,pi),k = 0,ans;
for (int i = n; i; i /= pi) k += i / pi;
for (int i = m; i; i /= pi) k -= i / pi;
for (int i = n - m; i; i /= pi) k -= i / pi;
ans = 1ll * a * inv(b,P) % P * inv(c,P) % P * qpow(pi,k,P) % P;
return 1ll * ans * (md / P) % md * inv(md / P,P) % md;
}
int exlucas(int n,int m){
int ans = 0;
for (int i = 1; i <= pi; i++){
ans = (ans + C(n,m,pk[i],p[i])) % md;
}
return ans;
}
int main(){
md = read(); n = read(); m = read();
for (int i = 1; i <= m; i++){
sum += (a[i] = read());
if (sum > n) {puts("Impossible"); return 0;}
}
Sp();
int ans = exlucas(n,sum);
for (int i = 1; i <= m; i++)
ans = 1ll * ans * exlucas(sum,a[i]) % md,sum -= a[i];
printf("%d\n",ans);
return 0;
}

BZOJ2142 礼物 【扩展Lucas】的更多相关文章

  1. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

  2. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  3. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

  4. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  5. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  6. bzoj 2142 礼物——扩展lucas模板

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas. 学习材料 ...

  7. BZOJ2142礼物——扩展卢卡斯

    题目描述 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店中购买了n件礼 ...

  8. bzoj2142 礼物——扩展卢卡斯定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142 前几天学了扩展卢卡斯定理,今天来磕模板! 这道题式子挺好推的(连我都自己推出来了) , ...

  9. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

随机推荐

  1. Redis源码阅读(五)集群-故障迁移(上)

    Redis源码阅读(五)集群-故障迁移(上) 故障迁移是集群非常重要的功能:直白的说就是在集群中部分节点失效时,能将失效节点负责的键值对迁移到其他节点上,从而保证整个集群系统在部分节点失效后没有丢失数 ...

  2. Excel VBA宏 链接服务器 上传和下载数据

    首先说明以下. 第一: 下面的 “ _" 也就是 空格下划线 在VBA中表示换行的意思:& 表示链接连个字符串的操作,注意 & 的前后是否需要空格 第二: 如果链接服务器,服 ...

  3. js中if else switch 条件判断的替代方法

    function condition(test){ return({ cat :function(){console.log('cat');}, dog :function(){console.log ...

  4. idea最常使用的快捷键

    撤销 反撤销 : Ctrl+Z / Ctrl+Shift+Z 删除一行 : Ctrl+Y 跳到实现类 : Ctrl+Alt+B 重命名文件:   shift+F6 控制台放大缩小: ctrl+shif ...

  5. 10.29 scrum meeting newbe软件团队工作分配

    这次会议,我们主要讨论了目前阶段的主要任务与任务分配问题. 首先,通读代码,理解程序的运行方式是必不可少的环节.所以我们要求团队的所有成员通读代码.并且对于开发人员和测试人员,要求写出我们分配的各自模 ...

  6. Scrum Meeting 11.03

    成员 今日任务 明日计划 用时 徐越 休息     赵庶宏 编写功能说明书,servlet代码移植 servlet代码移植 3h 薄霖 阅读上一届相关代码,思考改进方法 学习安卓界面设计数据库管理 4 ...

  7. 22_IO_第22天(File、递归)_讲义

    今日内容介绍 1.File 2.递归 xmind:下载地址: 链接:https://pan.baidu.com/s/1Eaj9yP5i0x4PiJsZA4StQg 密码:845a 01IO技术概述 * ...

  8. 深入理解JAVA集合系列四:ArrayList源码解读

    在开始本章内容之前,这里先简单介绍下List的相关内容. List的简单介绍 有序的collection,用户可以对列表中每个元素的插入位置进行精确的控制.用户可以根据元素的整数索引(在列表中的位置) ...

  9. 在虚拟机中安装Ubuntu详细过程

    参考:http://blog.csdn.net/u013142781/article/details/50529030

  10. 第五周PSP&进度条

    团队项目psp: 一.表格     C类型 C内容 S开始时间 E结束时间 I时间间隔 T净时间(mins) 预计花费时间(mins) 讨论 讨论用户界面 9:27 10:42 18 57 60 分析 ...