Time Limit: 10 Sec Memory Limit: 162 MB

Description

  

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。

所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两

个相邻木块颜色不同的着色方案。

  

Input

  

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

  

Output

  

  输出一个整数,即方案总数模1,000,000,007的结果。

  

Sample Input

  

  3

  1 2 3

  

Sample Output

  

  10

  

HINT

  

  100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

  

  

  

Solution

  

  ​ 是不是还想状压啊,行不通的,状态数太多了。

  

​   看看还有什么是比较小的:\(c_i\)看起来很小。

  

​   仔细想一想会发现,如果两种颜料的可使用次数相同,那么它们可以归为一类颜料。

  

  ​ 从可使用次数分类入手,设状态\(f[a_1][a_2][a_3][a_4][a_5][x]\),表示当前已使用\(i\)次的颜料有\(a_i\)种,且下一步将要选择当前可使用\(x\)次的颜料,的总方案数。

  

  ​ 干脆就自顶向下使用记忆化搜索DP实现。每个状态从哪里转移就很显然了:可以挑5类颜料中的一种,那么转移的来源就是\(\{a_1-1,a_2,a_3,a_4,a_5\}\),\(\{a_1+1,a_2-1,a_3,a_4,a_5\}\),\(\{a_1,a_2+1,a_3-1,a_4,a_5\}\),\(\{a_1,a_2,a_3+1,a_4-1,a_5\}\),\(\{a_1,a_2,a_3,a_4+1,a_5-1\}\)。

  

​   关键是转移的系数和递归参数。简单的讲,每类颜料\(i\)有\(a_i\)种不同的选法,但这没有考虑到题目要求两两不同给的限制。

  

​   注意每个状态的\(a_i\)是相对于当前状态下的信息,而\(x\)则是上一层状态给你做出的限制。你枚举当前这一步将要挑哪一类颜料,递归的时候就要把这类颜料作为下一步的\(x\)传进去,表示你下一层自己选择的时候,如果要选我这一层选择的这类颜料,你可用的选择数必须减1,否则将会和我冲突。而上一层递归给这一层传进了\(x\),说明上一层递归所挑的颜料在上一层为第\(x\)类,那么在这一层则是第\(x-1\)类(没用之前即减1)。如果你枚举当前层选择了第\(x-1\)类颜料,可用方案数必须减1。

  

​   需要梳理一下思路和控制关系,实现起来并不难。

  

  

  

#include <cstdio>
#include <cstring>
using namespace std;
const int N=16,MOD=1e9+7;
int n,a[6],c[6];
int f[N][N][N][N][N][6];
int dfs(int a1,int a2,int a3,int a4,int a5,int x){
int &F=f[a1][a2][a3][a4][a5][x];
if(F!=-1) return F;
F=0;
if(a1)
(F+=1LL*dfs(a1-1,a2,a3,a4,a5,1)*(a1-(x-1==1))%MOD)%=MOD;
if(a2)
(F+=1LL*dfs(a1+1,a2-1,a3,a4,a5,2)*(a2-(x-1==2))%MOD)%=MOD;
if(a3)
(F+=1LL*dfs(a1,a2+1,a3-1,a4,a5,3)*(a3-(x-1==3))%MOD)%=MOD;
if(a4)
(F+=1LL*dfs(a1,a2,a3+1,a4-1,a5,4)*(a4-(x-1==4))%MOD)%=MOD;
if(a5)
(F+=1LL*dfs(a1,a2,a3,a4+1,a5-1,5)*a5%MOD)%=MOD;
return F;
}
int main(){
freopen("input.in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
c[x]++;
}
memset(f,-1,sizeof f);
for(int i=0;i<=5;i++)
f[0][0][0][0][0][i]=1;
printf("%d\n",dfs(c[1],c[2],c[3],c[4],c[5],0));
return 0;
}

【BZOJ1079】【SCOI2008】着色方案的更多相关文章

  1. BZOJ1079 [SCOI2008]着色方案 动态规划

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1079 题目概括 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的 ...

  2. [luogu2476][bzoj1079][SCOI2008]着色方案【动态规划】

    题目描述 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难 ...

  3. BZOJ1079:[SCOI2008]着色方案(DP)

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个 ...

  4. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  5. BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)

    题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...

  6. 2018.10.20 bzoj1079: [SCOI2008]着色方案(多维dp)

    传送门 dp妙题. f[a][b][c][d][e][last]f[a][b][c][d][e][last]f[a][b][c][d][e][last]表示还剩下aaa个可以用一次的,还剩下bbb个可 ...

  7. BZOJ1079 [SCOI2008]着色方案[组合计数DP]

    $有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...

  8. bzoj1079: [SCOI2008]着色方案

    dp.以上次染色时用的颜色的数量和每种数量所含有的颜色作状态. #include<cstdio> #include<algorithm> #include<cstring ...

  9. 【记忆化搜索】bzoj1079 [SCOI2008]着色方案

    #include<cstring> #include<cstdio> using namespace std; #define MOD 1000000007 typedef l ...

  10. bzoj1079: [SCOI2008]着色方案

    ci<=5直接想到的就是5维dp了...dp方程YY起来很好玩...写成记忆化搜索比较容易 #include<cstdio> #include<cstring> #inc ...

随机推荐

  1. 在CentOS7上部署PostgreSQL11数据库系统

    在数据库上的选择,也是基于了稳定性为前提.其实选择的范围并不是太大,基本可以选择的范围也就是SQLServer.MySQL.PostgreSQL这三种.SQL Server是微软的商业数据库,无论是性 ...

  2. 零基础学Python之结构化数据(附详细的代码解释和执行结果截图)

    3结构化数据 字典(查找表).集合.元组.列表 3.1字典 是有两列任意多行的表,第一列存储一个键,第二列存储一个值. 它存储键/值对,每个唯一的键有一个唯一与之关联的值.(类似于映射.表) 它不会维 ...

  3. 07-matplotlib-箱线图

    import numpy as np import matplotlib.pyplot as plt ''' 箱形图(Box-plot)又称为盒须图,盒式图,或 箱线图: 是一种用在显示一组数据分散情 ...

  4. Linux(Contos7.5)环境搭建之JDK1.8安装(二)

    1.下载安装包 wget -p 目录 url包地址 2.解压安装包 tar -xzvf  文件 -C 指定目录 3.修改名称 mv jdk1.8.0_45 jdk1.8 4.配置环境变量 vim /e ...

  5. mkfs命令详解

    mkfs命令-->make filesystem的缩写:用来在特定的分区建立Linux文件系统     [命令作用] 该命令用来在特定的分区创建linux文件系统,常见的文件系统有ext2,ex ...

  6. MathExam第二次作业

    第二次作业:MathExam 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 30 • ...

  7. 第三周vim入门学习1

    一.vim模式介绍 1.概念:以下介绍内容来自维基百科Vim 从vi演生出来的Vim具有多种模式,这种独特的设计容易使初学者产生混淆.几乎所有的编辑器都会有插入和执行命令两种模式,并且大多数的编辑器使 ...

  8. 第三周linux学习

    实验二 Linux下C语言编程基础 一.实验目的 1. 熟悉Linux系统下的开发环境 2. 熟悉vi的基本操作 3. 熟悉gcc编译器的基本原理 4. 熟练使用gcc编译器的常用选项 5 .熟练使用 ...

  9. caffe可视化模型

    进入$CAFFE_ROOT/python: $ python draw_net.py ../models/bvlc_reference_caffenet/train_val.prototxt caff ...

  10. POJ 2441 Arrange the Bulls 状压dp

    题目链接: http://poj.org/problem?id=2441 Arrange the Bulls Time Limit: 4000MSMemory Limit: 65536K 问题描述 F ...