http://www.lydsy.com/JudgeOnline/problem.php?id=4013 (题目链接)

题意

  给出$n$个数的$m$个大小关系,问它们之间可以形成的单调不降的序列有多少种。

Solution

  首先,因为等于号相连的两个数位置互换不会产生新的方案,我们先用并查集把用等号相连的点全部缩成一个。如果此时的图中出现了环,那么答案为$0$。考虑答案不为$0$的情况怎么处理。此时的图已经成为了一个DAG,我们需要在上面统计方案。容易发现,对于一个点,有分有合,合的情况很好处理,分的情况就很尴尬了,什么?你说每一个点只有一条入边?(哔了狗了)。因为并查集缩点后整个图已经变成了一棵树,我们考虑如何进行树形dp。

  $f[x][i]$表示在$x$的子树中,组成的序列用$<$相连的等价类个数为$i$个的序列方案,其中等价类就表示由等号相连的一坨数。不妨设$y$是$x$的某个儿子,那么转移:

\begin{aligned}  g[i+l]=f[x][i]*f[y][j]*\binom{i-1+l}{j-1}*\binom{j-1}{k-l}   \end{aligned}

  其中$i\in[1,size[x]]$,$j\in[1,size[y]]$,$l\in[max(0,k-j+1),k]$。$g$是一个临时的存储答案的数组。$l$是我们枚举的$y$所贡献的等价类,那么剩下的$k-l$就是$y$中与原本$x$中相等的数的个数。$x$永远排在序列首位而且不会与任意一个数相等。$\binom{i-1+l}{j-1}$表示两个无相对关系的已经排序好的序列合并为一个序列的方案。$\binom{j-1}{k-l}$表示在$x$的$j-1$个数中选出与$y$的$k-l$个数相等的数的方案。

细节

  可能是个森林,所以用一个超级源点连向若干根节点。

代码

// bzoj4013
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf (1ll<<30)
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=200;
LL C[maxn][maxn],f[maxn][maxn],g[maxn];
int head[maxn],size[maxn],vis[maxn],fa[maxn],r[maxn],n,m,c,cnt,sum;
struct data {int u,v;}a[maxn];
struct edge {int to,next;}e[maxn]; int find(int x) {
return x==fa[x] ? x : fa[x]=find(fa[x]);
}
void link(int u,int v) {
e[++cnt]=(edge){v,head[u]};head[u]=cnt;
}
bool bfs() {
queue<int> q;q.push(0);
int tot=0;
while (!q.empty()) {
int x=q.front();q.pop();tot++;
for (int i=head[x];i;i=e[i].next)
if (!--r[e[i].to]) q.push(e[i].to);
}
return tot==sum+1;
}
void dfs(int x) {
vis[x]=f[x][1]=size[x]=1;
for (int i=head[x];i;i=e[i].next) if (!vis[e[i].to]) {
int y=e[i].to;dfs(y);
for (int j=1;j<=size[x];j++) {
if (!f[x][j]) continue;
for (int k=1;k<=size[y];k++) {
if (!f[y][k]) continue;
for (int l=max(0,k-j+1);l<=k;l++)
(g[j+l]+=f[x][j]*f[y][k]%MOD*C[j+l-1][j-1]%MOD*C[j-1][k-l]%MOD)%=MOD;
}
}
size[x]+=size[e[i].to];
for (int i=1;i<=size[x];i++) f[x][i]=g[i],g[i]=0;
}
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=0;i<=n;i++) C[i][0]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=i;j++) C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
for (int u,v,i=1;i<=m;i++) {
char ch[2];scanf("%d%s%d",&u,ch,&v);
if (ch[0]=='=') if (find(u)!=find(v)) fa[find(u)]=find(v);
if (ch[0]=='<') a[++c]=(data){u,v};
}
for (int i=1;i<=c;i++) {
int u=find(a[i].u),v=find(a[i].v);
link(u,v);r[v]++;
}
for (int i=1;i<=n;i++) if (fa[i]==i) {
sum++;
if (!r[i]) link(0,i),r[i]++;
}
if (!bfs()) {puts("0");return 0;}
dfs(0);
int ans=0;
for (int i=1;i<=n+1;i++) (ans+=f[0][i])%=MOD;
printf("%d",ans);
return 0;
}

【bzoj4013】 HNOI2015—实验比较的更多相关文章

  1. [BZOJ4013][HNOI2015]实验比较(树形DP)

    4013: [HNOI2015]实验比较 Time Limit: 5 Sec  Memory Limit: 512 MBSubmit: 756  Solved: 394[Submit][Status] ...

  2. BZOJ4013 : [HNOI2015]实验比较

    首先用并查集将等号缩点,然后拓扑排序判断有没有环,有环则无解,否则通过增加超级源点$0$,可以得到一棵树. 设$f[x][y]$表示$x$子树里有$y$种不同的数字的方案数,由底向上DP. 对于当前点 ...

  3. 【BZOJ4013】[HNOI2015]实验比较(动态规划)

    [BZOJ4013][HNOI2015]实验比较(动态规划) 题面 BZOJ 洛谷 题解 看题目意思就是给你一棵树,连边表示强制顺序关系.然后你要给点染色,在满足顺序关系的情况下,将序列染成若干个颜色 ...

  4. 4013: [HNOI2015]实验比较

    4013: [HNOI2015]实验比较 链接 分析: 首先把等号用并查集合并起来. 由于只存在最多一个质量不比i差的数,发现这是森林.若x<y,连边x->y.于是建虚拟根节点0. 然后树 ...

  5. bzoj 4013: [HNOI2015]实验比较

    Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...

  6. [HNOI2015]实验比较

    Description 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 N 张图片,编号为 1 到 N.实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选 ...

  7. P3240 [HNOI2015]实验比较 树形DP

    \(\color{#0066ff}{ 题目描述 }\) 小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验.实验用到的图片集一共有 \(N\) 张图片,编号为 \(1\) 到\(N\).实验分若 ...

  8. luogu P3240 [HNOI2015]实验比较

    传送门 首先根据题目条件,题目中如果是=的点可以缩起来,然后\(a<b\)连边\(a\rightarrow b\),而且所有点入度为最多1,那么判掉有环的不合法情况,题目中的依赖关系就是一颗外向 ...

  9. 【BZOJ】4013: [HNOI2015]实验比较

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4013 中第i 条涉及的图片对为(KXi, Xi),判断要么是KXi < Xi ,要么 ...

随机推荐

  1. POJ2251-Dungeon Master(3维BFS)

    You are trapped in a 3D dungeon and need to find the quickest way out! The dungeon is composed of un ...

  2. Datawhale MySQL 训练营 Task2 查询语句

    目录 MySQL 管理 MySQL 用户管理 参考 数据库管理 SQ查询语句 1. 导入示例数据库,教程 MySQL导入示例数据库 2. 查询语句 SELECT 3. 筛选语句 WHERE ,过滤 4 ...

  3. linux一切皆文件之Unix domain socket描述符(二)

    一.知识准备 1.在linux中,一切皆为文件,所有不同种类的类型都被抽象成文件(比如:块设备,socket套接字,pipe队列) 2.操作这些不同的类型就像操作文件一样,比如增删改查等 3.主要用于 ...

  4. 阿里云ubuntu16.04安装beef

    0x0 前言 环境:阿里云轻量服务器ubuntu16.04 需要安装2.4以上版本的ruby:https://www.cnblogs.com/Rain99-/p/10666247.html 参考资料 ...

  5. date命令详解

    基础命令学习目录首页 原文链接:https://www.cnblogs.com/qmfsun/p/4598650.html date "+今天是%Y-%d-%m,现在是%H:%M:%S&qu ...

  6. 关于react虚拟DOM的研究

    1.传统的前端是这样的,我在学校也都是这样做的,html(jsp)主要负责提供所有的DOM节点,而javascript负责动态效果,比如按钮点击,图片轮播等,这样的话javascript如何组织结构是 ...

  7. 课堂练习 psp表

    项目计划总结表: 日期 编程 完善程序 测试程序 参考资料 日总结 3.20 18:00---19:30       1.5 3.21   9:30----10:00 10:00---10:30   ...

  8. VS2010中配置OpenGL

    下面将对VS2010中配置OpenGL进行简单介绍. 学习OpenGL前的准备工作第一步,选择一个编译环境现在Windows系统的主流编译环境有Visual Studio,Broland C++ Bu ...

  9. C++自学随笔

    主要学习内容: 了解了IDE环境的含义 C++与C的区别: 新的数据类型:bool型 新的初始化方法:直接初始化int x(1024) 经过查找,了解了直接初始化与复制初始化的区别:"当用于 ...

  10. 【Coursera】支持向量机

    一.最大间隔分类器 1. 函数间隔:\(γ^{i} = y^{i}(w^{T} x + b)\), 改变w和b的量级,对分类结果不会产生任何影响,但是会改变函数间隔的大小.因此,直接对函数间隔求最大值 ...