poj 1251  && hdu 1301

Sample Input

9 //n 结点数
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0
Sample Output

216
30

prim算法

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; const int INF=0x3f3f3f3f;
const int MAXN=;
bool vis[MAXN];
int lowc[MAXN];
int n ;
int cost[MAXN][MAXN] ; int Prim()//点是0~n-1
{
int ans=;
memset(vis,false,sizeof(vis));
vis[]=true;
for(int i=;i<n;i++)lowc[i]=cost[][i];
for(int i=;i<n;i++)
{
int minc=INF;
int p=-;
for(int j=;j<n;j++)
if(!vis[j]&&minc>lowc[j])
{
minc=lowc[j];
p=j;
}
if(minc==INF)return -;//原图不连通
ans+=minc;
vis[p]=true;
for(int j=;j<n;j++)
if(!vis[j]&&lowc[j]>cost[p][j])
lowc[j]=cost[p][j];
}
return ans;
} int main()
{ // freopen("in.txt","r",stdin) ;
while(cin>>n)
{
if (n == )
break ;
char u , v;
int w , num ;
int i , j ;
for (i = ; i < n ; i++)
for (j = ; j < n ; j++)
cost[i][j] = INF ; for (i = ; i < n ; i++)
{
cin>>u>>num ;
while (num--)
{
cin>>v>>w ;
cost[u -'A'][v - 'A'] = w ;
cost[v - 'A'][u -'A'] = w ;
}
}
cout<<Prim()<<endl ; }
return ;
}

Kruskal算法

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; int n ;
const int MAXN=;//最大点数
const int MAXM=;//最大边数
int F[MAXN];//并查集使用
struct Edge
{
int u,v,w;
}edge[MAXM];//存储边的信息,包括起点/终点/权值 int tol;//边数,加边前赋值为0
void addedge(int u,int v,int w)
{ edge[tol].u=u;
edge[tol].v=v;
edge[tol++].w=w;
}
bool cmp(Edge a,Edge b)
{//排序函数,讲边按照权值从小到大排序
return a.w<b.w;
}
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
int Kruskal()//传入点数,返回最小生成树的权值,如果不连通返回-1
{
memset(F,-,sizeof(F));
sort(edge,edge+tol,cmp);
int cnt=;//计算加入的边数
int ans=;
for(int i=;i<tol;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
ans+=w;
F[t1]=t2;
cnt++;
}
if(cnt==n-)break;
}
if(cnt<n-)return -;//不连通
else return ans;
} int main()
{ // freopen("in.txt","r",stdin) ;
while(cin>>n)
{
if (n == )
break ;
char u , v;
int w , num ;
int i , j ;
tol = ;
for (i = ; i < n ; i++)
{
cin>>u>>num ;
while (num--)
{
cin>>v>>w ;
addedge(u,v,w) ;
}
}
cout<<Kruskal()<<endl ; }
return ;
}

poj 1258

Sample Input

4 //n
0 4 9 21 //邻接矩阵
4 0 8 17
9 8 0 16
21 17 16 0
Sample Output

28

prim

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; const int INF=0x3f3f3f3f;
const int MAXN=;
bool vis[MAXN];
int lowc[MAXN];
int n ;
int cost[MAXN][MAXN] ; int Prim()//点是0~n-1
{
int ans=;
memset(vis,false,sizeof(vis));
vis[]=true;
for(int i=;i<n;i++)lowc[i]=cost[][i];
for(int i=;i<n;i++)
{
int minc=INF;
int p=-;
for(int j=;j<n;j++)
if(!vis[j]&&minc>lowc[j])
{
minc=lowc[j];
p=j;
}
if(minc==INF)return -;//原图不连通
ans+=minc;
vis[p]=true;
for(int j=;j<n;j++)
if(!vis[j]&&lowc[j]>cost[p][j])
lowc[j]=cost[p][j];
}
return ans;
} int main()
{ //freopen("in.txt","r",stdin) ;
while(cin>>n)
{
int w ;
int i , j ;
for (i = ; i < n ; i++)
for (j = ; j < n ; j++)
{
cin>>w ;
if(w==)
cost[i][j] = INF ;
else
cost[i][j] = w ;
}
cout<<Prim()<<endl ; }
return ;
}

hdu 1863

Sample Input
3 3 //边数 结点数
1 2 1 //一条边两边结点的id 边的权值
1 3 2
2 3 4
1 3
2 3 2
0 100

Sample Output
3
? //不连通就输出这个

Kruskal

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; int n ;
const int MAXN=;//最大点数
const int MAXM=;//最大边数
int F[MAXN];//并查集使用
struct Edge
{
int u,v,w;
}edge[MAXM];//存储边的信息,包括起点/终点/权值 int tol;//边数,加边前赋值为0
void addedge(int u,int v,int w)
{ edge[tol].u=u;
edge[tol].v=v;
edge[tol++].w=w;
}
bool cmp(Edge a,Edge b)
{//排序函数,讲边按照权值从小到大排序
return a.w<b.w;
}
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
int Kruskal()//传入点数,返回最小生成树的权值,如果不连通返回-1
{
memset(F,-,sizeof(F));
sort(edge,edge+tol,cmp);
int cnt=;//计算加入的边数
int ans=;
for(int i=;i<tol;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
ans+=w;
F[t1]=t2;
cnt++;
}
if(cnt==n-)break;
}
if(cnt<n-)return -;//不连通
else return ans;
} int main()
{ // freopen("in.txt","r",stdin) ;
int m ;
while(scanf("%d %d" , &m , &n) != EOF)
{
if (m == )
break ;
int i ;
int u , v , w ;
tol = ;
while(m--)
{
scanf("%d %d %d" , &u , &v , &w) ;
addedge(u , v , w) ;
}
int k = Kruskal() ;
if (k == -)
printf("?\n") ;
else
printf("%d\n" , k) ; }
return ;
}

poj 1287

Sample Input
1 0

2 3 //结点 边
1 2 37//u v w
2 1 17
1 2 68

3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32

5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12

0

Sample Output

0
17
16
26

Kruskal

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; int n ;
const int MAXN=;//最大点数
const int MAXM=;//最大边数
int F[MAXN];//并查集使用
struct Edge
{
int u,v,w;
}edge[MAXM];//存储边的信息,包括起点/终点/权值 int tol;//边数,加边前赋值为0
void addedge(int u,int v,int w)
{ edge[tol].u=u;
edge[tol].v=v;
edge[tol++].w=w;
}
bool cmp(Edge a,Edge b)
{//排序函数,讲边按照权值从小到大排序
return a.w<b.w;
}
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
int Kruskal()//传入点数,返回最小生成树的权值,如果不连通返回-1
{
memset(F,-,sizeof(F));
sort(edge,edge+tol,cmp);
int cnt=;//计算加入的边数
int ans=;
for(int i=;i<tol;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
ans+=w;
F[t1]=t2;
cnt++;
}
if(cnt==n-)break;
}
if(cnt<n-)return -;//不连通
else return ans;
} int main()
{ //freopen("in.txt","r",stdin) ;
int m ;
while(scanf("%d %d" , &n , &m) != EOF)
{
if (n == )
break ;
int i ;
int u , v , w ;
tol = ;
if (n == && m == )
{
printf("0\n") ;
continue ;
}
while(m--)
{
scanf("%d %d %d" , &u , &v , &w) ;
addedge(u , v , w) ;
}
printf("%d\n" , Kruskal()) ; }
return ;
}

poj 2421

有的路已建 建好了的路权值设为0

Sample Input

3 // n
0 990 692 //邻接矩阵
990 0 179
692 179 0
1 //m
1 2 // u v
Sample Output

179

prim

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; const int INF=0x3f3f3f3f;
const int MAXN=;
bool vis[MAXN];
int lowc[MAXN];
int n ;
int cost[MAXN][MAXN] ; int Prim()//点是0~n-1
{
int ans=;
memset(vis,false,sizeof(vis));
vis[]=true;
for(int i=;i<n;i++)lowc[i]=cost[][i];
for(int i=;i<n;i++)
{
int minc=INF;
int p=-;
for(int j=;j<n;j++)
if(!vis[j]&&minc>lowc[j])
{
minc=lowc[j];
p=j;
}
if(minc==INF)return -;//原图不连通
ans+=minc;
vis[p]=true;
for(int j=;j<n;j++)
if(!vis[j]&&lowc[j]>cost[p][j])
lowc[j]=cost[p][j];
}
return ans;
} int main()
{ // freopen("in.txt","r",stdin) ;
while(cin>>n)
{
int w ;
int i , j ;
for (i = ; i < n ; i++)
for (j = ; j < n ; j++)
{
cin>>w ;
if(w==)
cost[i][j] = INF ;
else
cost[i][j] = w ;
}
int m ;
cin>>m ;
while(m--)
{
int x , y ;
cin>>x>>y ;
cost[x-][y-] = ;
cost[y-][x-] = ;
}
cout<<Prim()<<endl ; }
return ;
}

hdu 1233

n*(n-1)/2条边
Sample Input
3 //n
1 2 1 //u v w
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0

Sample Output
3
5

Kruskal

 # include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
# include <cmath>
# define LL long long
using namespace std ; int n ;
const int MAXN=;//最大点数
const int MAXM=;//最大边数
int F[MAXN];//并查集使用
struct Edge
{
int u,v,w;
}edge[MAXM];//存储边的信息,包括起点/终点/权值 int tol;//边数,加边前赋值为0
void addedge(int u,int v,int w)
{ edge[tol].u=u;
edge[tol].v=v;
edge[tol++].w=w;
}
bool cmp(Edge a,Edge b)
{//排序函数,讲边按照权值从小到大排序
return a.w<b.w;
}
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
int Kruskal()//传入点数,返回最小生成树的权值,如果不连通返回-1
{
memset(F,-,sizeof(F));
sort(edge,edge+tol,cmp);
int cnt=;//计算加入的边数
int ans=;
for(int i=;i<tol;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
int t1=find(u);
int t2=find(v);
if(t1!=t2)
{
ans+=w;
F[t1]=t2;
cnt++;
}
if(cnt==n-)break;
}
if(cnt<n-)return -;//不连通
else return ans;
} int main()
{ // freopen("in.txt","r",stdin) ;
while(scanf("%d" , &n) != EOF)
{
if (n == )
break ;
int i ;
int u , v , w ;
tol = ; for (i = ; i <= (n-)*n/ ; i++)
{
scanf("%d %d %d" , &u , &v , &w) ;
addedge(u , v , w) ;
}
printf("%d\n" , Kruskal()) ; }
return ;
}

poj 1251 poj 1258 hdu 1863 poj 1287 poj 2421 hdu 1233 最小生成树模板题的更多相关文章

  1. HDU 1233 最小生成树模板题,练练模板

    还是畅通工程 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. POJ 1287 Networking (最小生成树模板题)

    Description You are assigned to design network connections between certain points in a wide area. Yo ...

  3. POJ 1258:Agri-Net Prim最小生成树模板题

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 45050   Accepted: 18479 Descri ...

  4. 最小生成树模板题POJ - 1287-prim+kruskal

    POJ - 1287超级模板题 大概意思就是点的编号从1到N,会给你m条边,可能两个点之间有多条边这种情况,求最小生成树总长度? 这题就不解释了,总结就算,prim是类似dijkstra,从第一个点出 ...

  5. POJ 1789 Truck History【最小生成树模板题Kruscal】

    题目链接:http://poj.org/problem?id=1789 大意: 不同字符串相同位置上不同字符的数目和是它们之间的差距.求衍生出全部字符串的最小差距. #include<stdio ...

  6. POJ 2289 Jamie's Contact Groups 【二分】+【多重匹配】(模板题)

    <题目链接> 题目大意: 有n个人,每个人都有一个或者几个能够归属的分类,将这些人分类到他们能够归属的分类中后,使所含人数最多的分类值最小,求出该分类的所含人数值. 解题分析: 看到求最大 ...

  7. POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题

    A rooted tree is a well-known data structure in computer science and engineering. An example is show ...

  8. POJ 1789 Truck History (Kruskal最小生成树) 模板题

    Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for v ...

  9. HDU 1863 畅通工程(Prim,Kruskal,邻接表模板)

    畅通工程 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

随机推荐

  1. SQL记录-资源正忙online或nowait

    1.多个tomcat 修改3个端口 2.oracle-00054:资源正忙 被锁住了 建立索引加online参数 1:创建索引时会产生的锁 2:dml 语句会产生的锁 3:索引创建时加上关键字 onl ...

  2. jq版轮播图

    html部分 <div class="banner"> <ul class="img"> <li><img src=& ...

  3. HashMap分析及散列的冲突处理

    1,Hashing过程 像二分查找.AVL树查找,这些查找算法的时间复杂度为O(logn),而对于哈希表而言,我们一般说它的查找时间复杂度为O(1).那它是怎么实现的呢?这就是一个Hashing过程. ...

  4. Spring第一个helloWorld

    Spring 简介: 轻量级:Spring是非侵入性的-基于Spring开发的应用中的对象可以不依赖于Spring的API 依赖注入(DI—dependdency injection.IOC) 面向切 ...

  5. luogu P2596 [ZJOI2006]书架

    传送门 感觉要死在\(Splay\)里了 orz 这题用\(Splay\)维护这个序列,其中的第\(k\)大点代表这个序列的第\(k\)个数 第一个操作,先把那个数所在的点旋到根,然后把整个根的左子树 ...

  6. 【文件】使用word的xml模板生成.doc文件

    一.编辑模板 替换地方以变量标记如“案件编号”可写成{caseNo} template.xml 二.准备数据 以HashMap封装数据,原理是替换模板中的变量 三.替换操作 选择输出位置:writeP ...

  7. python 新式类的 __getattribute__

    这个方法定义在object中,所以所有的新式类都继承有该方法,所有的新式类的实例在获取属性value的时候都会调用该方法,为了验证这一结论,我们重写一下该方法: class C(object): a ...

  8. mysql 案例~select引起的性能问题

    案例1 背景:测试环境下发现大量select查询,而且负载飙升到90+ 排查思路: 1 老规则,按照排错脚本走一圈,规划出几个元素(1 针对库访问的统计 2针对具体语句类型的统计),发现有大量的sel ...

  9. Weblogic的安装与卸载

    一.下载weblogic 到Oracle官网https://www.oracle.com/downloads/index.html,我在这里下载的是weblogic12C进行安装:https://ww ...

  10. SpringMVC使用Burlap发布远程服务

    参考这篇文章https://www.cnblogs.com/fanqisoft/p/10283156.html 将提供者配置类中的 @Bean public HessianServiceExporte ...