不错的文章:LDA-math-MCMC 和 Gibbs Sampling

可作为精进MCMC抽样方法的学习材料。

简单概率分布的模拟

Box-Muller变换原理详解

本质上来说,计算机只能生产符合均匀分布的采样。如果要生成其他分布的采样,就需要借助一些技巧性的方法,例如我们在前面的文章提到过的逆变换采样、拒绝采样以及自适应的拒绝采样等等。

涉及到 "逆变换" [Bayes] runif: Inversion Sampling

例如:U1, U2是均匀分布,可得到两个高斯分布的变量X, Y。

复杂概率分布的模拟

使用的必要性

当p(x)的形式很复杂,或者 p(x) 是个高维的分布的时候,样本的生成就可能很困难了。 譬如有如下的情况

      • p(x)=p~(x)∫p~(x)dx,而 p~(x) 我们是可以计算的,但是底下的积分式无法显式计算。
      • p(x,y) 是一个二维的分布函数,这个函数本身计算很困难,但是条件分布 p(x|y),p(y|x)的计算相对简单;如果 p(x) 是高维的,这种情形就更加明显。

此时就需要使用一些更加复杂的随机模拟的方法来生成样本。而本节中将要重点介绍的 MCMC(Markov Chain Monte Carlo) 和 Gibbs Sampling算法就是最常用的一种,这两个方法在现代贝叶斯分析中被广泛使用。要了解这两个算法,我们首先要对马氏链的平稳分布的性质有基本的认识。

马氏链及其平稳分布

平稳性:这个收敛行为主要是由概率转移矩阵P决定的。

自然的,这个收敛现象并非是我们这个马氏链独有的,而是绝大多数马氏链的共同行为,关于马氏链的收敛我们有如下漂亮的定理:

马氏链定理 如果一个非周期马氏链具有转移概率矩阵P,且它的任何两个状态是连通的,那么 limn→∞Pnij 存在且与i无关,记 limn→∞Pnij=π(j), 我们有

    1. limn→∞Pn=⎡⎣⎢⎢⎢⎢⎢π(1)π(1)⋯π(1)⋯π(2)π(2)⋯π(2)⋯⋯⋯⋯⋯⋯π(j)π(j)⋯π(j)⋯⋯⋯⋯⋯⋯⎤⎦⎥⎥⎥⎥⎥
    2. π(j)=∑i=0∞π(i)Pij
    3. π 是方程 πP=π 的唯一非负解

其中,  π=[π(1),π(2),⋯,π(j),⋯],∑i=0∞πi=1

π称为马氏链的平稳分布。

这个马氏链的收敛定理非常重要,所有的 MCMC(Markov Chain Monte Carlo) 方法都是以这个定理作为理论基础的

历史由来

马氏链的平稳分布 --> Metropolis算法

对于给定的概率分布p(x),我们希望能有便捷的方式生成它对应的样本。由于马氏链能收敛到平稳分布, 于是一个很的漂亮想法是:如果我们能构造一个转移矩阵为P的马氏链,使得该马氏链的平稳分布恰好是p(x), 那么我们从任何一个初始状态x0出发沿着马氏链转移, 得到一个转移序列 x0,x1,x2,⋯xn,xn+1⋯,, 如果马氏链在第n步已经收敛了,于是我们就得到了 π(x) 的样本xn,xn+1⋯。

这个绝妙的想法在1953年被 Metropolis想到了,为了研究粒子系统的平稳性质, Metropolis 考虑了物理学中常见的波尔兹曼分布的采样问题,首次提出了基于马氏链的蒙特卡罗方法,即Metropolis算法,并在最早的计算机上编程实现。Metropolis 算法是首个普适的采样方法,并启发了一系列 MCMC方法,所以人们把它视为随机模拟技术腾飞的起点。 Metropolis的这篇论文被收录在《统计学中的重大突破》中, Metropolis算法也被遴选为二十世纪的十个最重要的算法之一。

改进变种:Metropolis-Hastings 算法

我们接下来介绍的MCMC 算法是 Metropolis 算法的一个改进变种,即常用的 Metropolis-Hastings 算法。

Gibbs Sampling

对于,由于接受率 α的存在(通常 α<1), 以上 Metropolis-Hastings 算法的效率不够高。能否找到一个转移矩阵Q使得接受率 α=1 呢?

[Bayes] dchisq: Metropolis-Hastings Algorithm的更多相关文章

  1. Metropolis-Hastings算法

    (学习这部分内容大约需要1.5小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)是一种近似采样算法, 它通过定义稳态分布为 \(p\) 的马尔科夫链, 在 ...

  2. 为什么要用Markov chain Monte Carlo (MCMC)

    马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distrib ...

  3. [Bayes] Hist & line: Reject Sampling and Importance Sampling

    吻合度蛮高,但不光滑. > L= > K=/ > x=runif(L) > *x*(-x)^/K)) > hist(x[ind],probability=T, + xla ...

  4. [Bayes] What is Sampling

    Ref: http://blog.csdn.net/xianlingmao/article/details/7768833 通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的 ...

  5. Metropolis Hasting算法

    Metropolis Hasting Algorithm: MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样.主要原理是构造了一个精妙的Markov链,使得该链的稳态 ...

  6. Gibbs sampling

    In statistics and in statistical physics, Gibbs sampling or a Gibbs sampler is aMarkov chain Monte C ...

  7. 本人AI知识体系导航 - AI menu

    Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯   徐亦达老板 Dirichlet Process 学习 ...

  8. [UFLDL] Generative Model

    这一部分是个坑,应该对绝大多数菜鸡晕头转向的部分,因为有来自物理学界的问候. Deep learning:十九(RBM简单理解) Deep learning:十八(关于随机采样)    采样方法 [B ...

  9. 蒙特卡洛马尔科夫链(MCMC)

    蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明: ...

随机推荐

  1. UIProgressView进度条

    //非原创 UIProgressView顾名思义用来显示进度的,如音乐,视频的播放进度,和文件的上传下载进度等. 下面以一个简单的实例来介绍UIprogressView的使用. @interface  ...

  2. C# 数据结构基础-实现循环队列

    队列     队列的概念是先进先出,这个应该不用多说了.看下面那个从网上找的现成图片. 循环队列     循环队列在逻辑上将队列中的数据摆成环形,如下图: 下面直接上代码. 队列 队列的概念是先进先出 ...

  3. StackExchange.Redis 管道 批量 高性能插入数据

    现在用redis来做数据缓存的越来越多了,很多项目都有初始化redis数据的过程,由于初始化的数据比较大,那么该过程越快越好.这里我们以HashSet方法为例, 这里我们推荐用HashEntry[] ...

  4. iOS开发-观察者模式

    观察者模式也被称作发布/订阅模式,观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象.这个主题对象在状态发生变化时,会通知所有观察者对象,使它们能够自动更新自己.观察者模式中 ...

  5. ThinkPhp 使用PhpExcel导出导入多语言文件

    在ThinkPHP 里已经实现了多语言功能,只要在指定的目录下创建对应的语言文件并填充内容,即可实现多语言功能 而多语言的翻译却是一个很麻烦的事情,因为客户特定的行业问题导致我们翻译可能是不准确的 于 ...

  6. getting-started-with-mqtt

    来自:https://dzone.com/refcardz/getting-started-with-mqtt SECTION 1 Why MQTT? The Internet of Things ( ...

  7. Spark机器学习(11):协同过滤算法

    协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...

  8. iOS开源项目之日志框架CocoaLumberjack

    CocoaLumberjack是Mac和iOS上一个集快捷.简单.强大和灵活于一身的日志框架.CocoaLumberjack类似于流行的日志框架(如log4j),但它是专为Objective-C设计的 ...

  9. MongoDB(1)--简单介绍以及安装

    前段时间接触了NoSql类型的数据库redis,当时是作为缓存server使用的.那么从这篇博客開始学习还有一个非常出名的NoSql数据库:MongoDb.只是眼下还没有在开发其中使用.一步一步来吧. ...

  10. void java.lang.System.gc()

    void java.lang.System.gc() Runs the garbage collector. Calling the gc method suggests that the Java ...