原文地址:

https://blog.csdn.net/happyday_d/article/details/85267561

--------------------------------------------------------------------------------------------------------

Pytorch中的学习率调整:lr_scheduler,ReduceLROnPlateau

  • torch.optim.lr_scheduler:该方法中提供了多种基于epoch训练次数进行学习率调整的方法;

  • torch.optim.lr_scheduler.ReduceLROnPlateau:该方法提供了一些基于训练过程中的某些测量值对学习率进行动态的下降.

lr_scheduler调整方法一:根据epochs

CLASS torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

将每个参数组的学习率设置为给定函数的初始值,当last_epoch=-1时,设置初始的lr作为lr;

参数:

optimizer:封装好的优化器

lr_lambda(function or list):一个计算每个epoch的学习率的函数或者一个list;

last_epoch:最后一个epoch的索引

eg:

>>> # Assuming optimizer has two groups.
>>> lambda1 = lambda epoch: epoch // 30
>>> lambda2 = lambda epoch: 0.95 ** epoch
>>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2])
>>> for epoch in range(100):
>>> scheduler.step()
>>> train(...)
>>> validate(...)
CLASS torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

当epoch每过stop_size时,学习率都变为初始学习率的gamma倍

eg:

>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.05 if epoch < 30
>>> # lr = 0.005 if 30 <= epoch < 60
>>> # lr = 0.0005 if 60 <= epoch < 90
>>> # ...
>>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
>>> for epoch in range(100):
>>> scheduler.step()
>>> train(...)
>>> validate(...)
CLASS torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

当训练epoch达到milestones值时,初始学习率乘以gamma得到新的学习率;

eg:

>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.05 if epoch < 30
>>> # lr = 0.005 if 30 <= epoch < 80
>>> # lr = 0.0005 if epoch >= 80
>>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1)
>>> for epoch in range(100):
>>> scheduler.step()
>>> train(...)
>>> validate(...)
CLASS torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

每个epoch学习率都变为初始学习率的gamma倍

CLASS torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

利用cos曲线降低学习率,该方法来源SGDR,学习率变换如下公式:

其中:

ηmaxηmax​为初始学习率,Tcur

Tcur​为当前epochs;

eta_min表示公式中的ηminηmin​,常设置为0;ηminηmin​,常设置为0;

lr_scheduler调整方法一:根据测试指标

CLASS torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

当参考的评价指标停止改进时,降低学习率,factor为每次下降的比例,训练过程中,当指标连续patience次数还没有改进时,降低学习率;

参考

https://pytorch.org/docs/stable/optim.html

【转载】 Pytorch中的学习率调整lr_scheduler,ReduceLROnPlateau的更多相关文章

  1. pytorch中的学习率调整函数

    参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供 ...

  2. [转载]PyTorch中permute的用法

    [转载]PyTorch中permute的用法 来源:https://blog.csdn.net/york1996/article/details/81876886 permute(dims) 将ten ...

  3. [转载]Pytorch中nn.Linear module的理解

    [转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:h ...

  4. tensorflow中的学习率调整策略

    通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点. tensorflow中提供了多种学习率的调整方式.在https://www.tens ...

  5. 【转载】 PyTorch学习之六个学习率调整策略

    原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 ----------------------------------- ...

  6. PyTorch学习之六个学习率调整策略

    PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 有序调整:等间隔调整(Step),按需调整学习率(Mul ...

  7. pytorch中调整学习率的lr_scheduler机制

    有的时候需要我们通过一定机制来调整学习率,这个时候可以借助于torch.optim.lr_scheduler类来进行调整:一般地有下面两种调整策略:(通过两个例子来展示一下) 两种机制:LambdaL ...

  8. 【转载】 Pytorch(0)降低学习率torch.optim.lr_scheduler.ReduceLROnPlateau类

    原文地址: https://blog.csdn.net/weixin_40100431/article/details/84311430 ------------------------------- ...

  9. Pytorch系列:(八)学习率调整方法

    学习率的调整会对网络模型的训练造成巨大的影响,本文总结了pytorch自带的学习率调整函数,以及其使用方法. 设置网络固定学习率 设置固定学习率的方法有两种,第一种是直接设置一些学习率,网络从头到尾都 ...

随机推荐

  1. MapReduce(三)

    MapReduce(三) MapReduce(三): 1.关于倒叙排序前10名 1)TreeMap根据key排序 2)TreeSet排序,传入一个对象,排序按照类中的compareTo方法排序 2.写 ...

  2. CNN autoencoder 先降维再使用kmeans进行图像聚类 是不是也可以降维以后进行iforest处理?

    import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers ...

  3. “SecureCRT遇到一个致命的错误且必须关闭”处理办法

    打开SecureCRT时报错:SecureCRT遇到一个致命的错误且发须关闭.一个崩溃转储文件已创建于... 解决办法是,如下在cmd中输入regedit回车打开注册表编缉器 展开HKEY_LOCAL ...

  4. oracle配置访问白名单教程

    出于提高数据安全性等目地,我们可能想要对oracle的访问进行限制,允许一些IP连接数据库或拒绝一些IP访问数据库. 当然使用iptables也能达到限制的目地,但是从监听端口变更限制仍可生效.只针对 ...

  5. suffix word al ain aire out ~A1

    1◆ al 2◆ ain ~的人   3◆ aire 表名词  

  6. Jdbc连接数据库基本步骤

    Jdbc连接数据库的基本步骤: package demo.jdbc; import java.sql.Connection; import java.sql.DriverManager; import ...

  7. 《Python》IO模型

    一.IO模型介绍 为了更好地了解IO模型,我们需要事先回顾下: 同步:一件事情做完再做另一件事情 异步:同时做多件事情 阻塞:sleep.input.join.shutdown.get.acquire ...

  8. URL组成成分及各部分作用简介及urllib.parse / uri

    URL的一般格式为(带方括号[]的为可选项): protocol :// hostname[:port] / path / [;parameters][?query]#fragment urllib. ...

  9. 小程序之setData特殊情况 三种情况的wx:if

    比如data{ “a”:{}, "b":{} } 你想完成这样的结构 //创建一个对象 var readyData={} //对象[key] =另一个对象 readyData[ke ...

  10. Linux关闭防火墙步骤

    1   先查询防火墙状态 [root@old-09 ~]# /etc/init.d/iptables status Table: filter Chain INPUT (policy ACCEPT) ...