P2163 【[SHOI2007]园丁的烦恼】
其实是不用把一个询问拆成四个的
把询问转化为数学语言:
对于每个查询,询问满足$a<=x<=b$且$c<=y<=d$的点$x,y$的个数
~~自然~~想到偏序问题,看到有两个式子,二维偏序?好像办不到,反正我不会
如何升维,拆分即可
把原式拆成$a<=x,x<=b,c<=y,y<=d$,这样就可以用四维偏序解决了,但是这样的复杂度显然是不能保证的
尝试降维
如果这样呢$a<=x,x<=b,c<=y<=d$
对于一个点,我们定义其三个维度为:
$a,b->x$即以横坐标作为第一维和第二维
$c->y$即以纵坐标作为第三维
而查询,依照上式,我们定义其维度
以$a$为第一维,$c$为第二维,$b,d$为三维和四维(查询用)
所以三维偏序的式子就是
$a_i<=a_j,b_i>=b_j,c_i<=c_j<=d_i$
考虑重复元素的贡献问题,记得排序时加上$c$相同,按$d$排
上代码(其实是要写离散化的,但是我懒得写,拿$O2$替了)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=5e5+,maxl=1e7+;
struct node{
int a,b,c,d,w,mp;
}v[*maxn];
int n,m,c[maxl],ans[maxn];
bool cmpy(const node &a,const node &b)
{
return a.b==b.b?(a.c==b.c?a.d<b.d:a.c>b.c):a.b<b.b;
}
bool cmpx(const node &a,const node &b)
{
return a.a==b.a?cmpy(a,b):a.a>b.a;
}
int lowbit(int x)
{
return x&-x;
}
void add(int x,int ch)
{
while(x<=maxl-)
{
c[x]+=ch;
x+=lowbit(x);
}
}
int sum(int x)
{
int ret=;
while(x)
{
ret+=c[x];
x-=lowbit(x);
}
return ret;
}
void cdq(int l,int r)
{
if(l==r)
return;
int mid=l+r>>;
cdq(l,mid),cdq(mid+,r);
sort(v+l,v+mid+,cmpy),sort(v+mid+,v+r+,cmpy);
int i=l,j=mid+;
for(;j<=r;j++)
{
while(v[i].b<=v[j].b&&i<=mid)
add(v[i].c,v[i].w),i++;
ans[v[j].mp]+=sum(v[j].d)-sum(v[j].c-);
}
for(j=l;j<i;j++)
add(v[j].c,-v[j].w);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
scanf("%d%d",&v[i].a,&v[i].c);
v[i].a++,v[i].c++;
v[i].b=v[i].a,v[i].w=,v[i].d=v[i].mp=;
}
for(int i=n+;i<=n+m;i++)
{
scanf("%d%d%d%d",&v[i].a,&v[i].c,&v[i].b,&v[i].d);
v[i].a++,v[i].b++,v[i].c++,v[i].d++;
v[i].w=,v[i].mp=i-n;
}
sort(v+,v+n+m+,cmpx);
cdq(,n+m);
for(int i=;i<=m;i++)
printf("%d\n",ans[i]);
return ;
}
P2163 【[SHOI2007]园丁的烦恼】的更多相关文章
- P2163 [SHOI2007]园丁的烦恼
题目 P2163 [SHOI2007]园丁的烦恼 做法 关于拆点,要真想拆直接全部用树状数组水过不就好了 做这题我们练一下\(cdq\)分治 左下角\((x1,y1)\)右上角\((x2,y2)\), ...
- 洛谷 P2163 [SHOI2007]园丁的烦恼 (离线sort,树状数组,解决三维偏序问题)
P2163 [SHOI2007]园丁的烦恼 题目描述 很久很久以前,在遥远的大陆上有一个美丽的国家.统治着这个美丽国家的国王是一个园艺爱好者,在他的皇家花园里种植着各种奇花异草. 有一天国王漫步在花园 ...
- P2163 [SHOI2007]园丁的烦恼(cdq分治)
思路 其实是cdq的板子 题目要求询问对于每个给出的xi,yi,xj,yj形如xi<=x<=xj.yi<=y<=yj的x,y对数有多少组 改成四个询问,拆成四个前缀和的形式后就 ...
- bzoj1935 [Shoi2007]园丁的烦恼
bzoj1935 [Shoi2007]园丁的烦恼 有N个点坐标为(xi,yi),M次询问,询问(a,b)-(c,d)的矩形内有多少点. 0≤n≤500000,1≤m≤500000,0≤xi,yi≤10 ...
- [LuoguP2163][SHOI2007]园丁的烦恼_CDQ分治
园丁的烦恼 题目链接:https://www.luogu.org/problem/P2163 数据范围:略. 题解: 树套树过不去,那就$CDQ$分治好了. 有点小细节,但都是$CDQ$分治必要的. ...
- luoguP2163 [SHOI2007]园丁的烦恼
安利系列博文 https://www.cnblogs.com/tyner/p/11565348.html https://www.cnblogs.com/tyner/p/11605073.html 题 ...
- BZOJ1935或洛谷2163 [SHOI2007]园丁的烦恼
BZOJ原题链接 洛谷原题链接 很容易想到二维前缀和. 设\(S[i][j]\)表示矩阵\((0, 0)(i, j)\)内树木的棵数,则询问的矩形为\((x, y)(xx, yy)\)时,答案为\(S ...
- [SHOI2007]园丁的烦恼
裸的二维数点 #include"cstdio" #include"cstring" #include"iostream" #include& ...
- 【[SHOI2007]园丁的烦恼】
\(CDQ\) 分治的神奇操作 这个问题跟偏序问题好像差的不小啊 但是就是可以转化过去 对于一个查询我们可以把它拆成四个,也就是用二维前缀和的方式来查询 我们发现其实前缀和的定义就是多少个点的横纵坐标 ...
随机推荐
- 聊一聊docker存储驱动
目录 镜像的分层特性 容器读写层的工作原理 写时复制 用时配置 Docker存储驱动 AUFS OverlayFS Devicemapper 常用存储驱动对比 AUFS VS OverlayFS Ov ...
- mac 本上对 rar 压缩包解压
以前从晚上各种找软件对 xxx.rar 压缩包文件进行解压,也确实找到过那么几个,要不是不好用就是解压完有乱码,很是头疼. 这次又遇到这样的问题,于是下定决心将这个问题彻底解决好,经过验证,总结一下最 ...
- git协同开发
当你从远程仓库克隆时,实际上Git自动把本地的master分支和远程的master分支对应起来了,并且,远程仓库的默认名称是origin. 要查看远程库的信息,用git remote: [root@w ...
- bzoj千题计划306:bzoj2342: [Shoi2011]双倍回文 (回文自动机)
https://www.lydsy.com/JudgeOnline/problem.php?id=2342 解法一: 对原串构建回文自动机 抽离fail树,从根开始dfs 设len[x]表示节点x表示 ...
- Java入门系列(十二)Java反射
Why--指的是为什么做这件事,也既事物的本质. 反射之中包含了一个“反”的概念,所以要想解释反射就必须先从“正”开始解释,一般而言,当用户使用一个类的时候,应该先知道这个类,而后通过这个类产生实例化 ...
- sql 储存过程的使用
--获取所有数据 根据自定义函数传人类型id返回类型名称 USE [Cloths] GO /****** Object: StoredProcedure [dbo].[Proc_all] Script ...
- Linux - 账户切换授权
sudo 切换账户 echo myPassword | sudo -S ls /tmp # 直接输入sudo的密码非交互,从标准输入读取密码而不是终端设备 visudo # sudo命令权限添加 /e ...
- Python人工智能之路 - 第四篇 : jieba gensim 最好别分家之最简单的相似度实现
简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能 ...
- cetus系列~ cetus+mha
一 简介:mha+cetus高可用架构二 环境 1 mysql 5.7 并行复制+GTID 2 cetus最新版 3 mha0.57二 安装 1 安装mha-rpm包 2 做免密认证 3 ...
- D- 泛型练习 ,继承,方法
unit Unit3; interface uses Winapi.Windows, Winapi.Messages, System.SysUtils, System.Variants, System ...