DSO windowed optimization 代码 (4)
5 “step”计算
参考《DSO windowed optimization 公式》,计算各个优化变量的增加量。
公式再写一下:
\begin{bmatrix} H_{\rho\rho} & H_{\rho X} \\ 0 & H_{XX} - H_{X\rho} H_{\rho\rho}^{-1} H_{\rho X} \end{bmatrix} \begin{bmatrix} \delta \rho \\ \delta X \end{bmatrix} &= - \begin{bmatrix} J_{\rho}^T r \\ J_X^T r - H_{X\rho} H_{\rho\rho}^{-1} J_{\rho}^T r \end{bmatrix} \notag \end{align}\]
我们的目标是用上面的第二个方程
\]
计算出 \(\delta X\),再代回第一个方程
\]
计算 \(\delta \rho\)。
5.1 \(\delta X\) 计算
这里 ldlt 计算
\]
的结果\(-\delta X\)。少了一个负号,所以后面在函数 EnergyFunctional::resubstituteF_MT 的计算内参增量和计算帧增量,加了一个负号。这里不要犯迷糊,一开始什么不懂的时候,认为这里 Engel 写错了。
这个计算还是很清晰的。
5.2 \(\delta \rho\) 计算
整理一下,我们要计算的方程是这个:
\]
\(-H_{\rho\rho}^{-1}\) 是一个对角阵,如果看上面方程的一行,得到的结果是
\]
(如果 \(r^{(i)}\) 与 \(\rho^{(j)}\) 没有关系,导数 \({\partial r^{(i)} \over \partial \rho^{(j)}}\) 为 0。)
这个计算比较麻烦,计算过程在函数 EnergyFunctional::resubstituteFPt 中,首先在 EnergyFunctional::resubstituteF_MT的这里 准备xAd
数组,这个数组的[h,t]是
\]
嗯,事先把 adjoint 导数转换准备好。
接着在这里几行计算 \(\delta \rho^{(j)}\):
float b = p->bdSumF;
b -= xc.dot(p->Hcd_accAF + p->Hcd_accLF);
for(EFResidual* r : p->residualsAll)
{
if(!r->isActive()) continue;
b -= xAd[r->hostIDX*nFrames + r->targetIDX] * r->JpJdF;
}
p->data->step = - b*p->HdiF;
p->bdSumF
对应 \(\sum_{i=1}^N {\partial r^{(i)} \over \partial \rho^{(j)}}^T r^{(i)}\)。
p->Hcd_accAF + p->Hcd_accLF
对应 \(\sum_{i=1}^N {\partial r^{(i)} \over \partial C}^T{\partial r^{(i)} \over \partial \rho^{(j)}}\)。
r->JpJdF
对应 \({\partial r^{(i)} \over \partial X_{th}}^T{\partial r^{(i)} \over \partial \rho^{(j)}}\)。
结果就出来了。
DSO windowed optimization 代码 (4)的更多相关文章
- DSO windowed optimization 代码 (2)
3 非 Schur Complement 部分信息计算 参考<DSO windowed optimization 公式>,非Schur Complement 部分指 \(H_{XX}\) ...
- DSO windowed optimization 代码 (3)
4 Schur Complement 部分信息计算 参考<DSO windowed optimization 公式>,Schur Complement 部分指 Hsc(\(H_{X\rho ...
- DSO windowed optimization 代码 (1)
这里不想解释怎么 marginalize,什么是 First-Estimates Jacobian (FEJ).这里只看看代码,看看Hessian矩阵是怎么构造出来的. 1 优化流程 整个优化过程,也 ...
- DSO windowed optimization 公式
这里有一个细节,我想了很久才想明白,DSO 中的 residual 联系了两个关键帧之间的相对位姿,但是最终需要优化帧的绝对位姿,中间的导数怎么转换?这里使用的是李群.李代数中的Adjoint. 参考 ...
- Adjoint of SE(3)
以前看的书都提到 SE(3) 和 se(3) 的 Adjoint,但是并没有讲这个东西是干什么用的,只是给了一堆性质.这东西来自群论. 参考 Lie Groups for 2D and 3D Tran ...
- Paper Reading: Stereo DSO
开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...
- Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras 论文摘要
1. Abstract 通过一种Unified Omnidirectional Model作为投影方程. 这种方式可以使用图像的所有内容包括有强畸变的区域,而现存的视觉里程计方案只能修正或者切掉来使用 ...
- OD: GS Bypasing via SEH / .data
通过 SEH 绕过 GS 保护 GS 机制没对 SEH 提供保护,所以可心通过攻击异常来绕过 GS. 实验环境为: VMware : Windows sp4, 此版本无 SafeSEH 的影响 Vis ...
- [翻译] JFDepthView 给view提供3D景深
JFDepthView 给view提供3D景深 https://github.com/atljeremy/JFDepthView This is an iOS project for presenti ...
随机推荐
- wamp下var_dump()相关问题
PHP 使用var_dump($arr)时 没有格式化输出. 原因是没有启用‘XDebug’扩展 [xdebug]zend_extension ="d:/wamp/bin/php/php7. ...
- ef 问题汇总
持续更新: 一 属性重命名 数据库:UserName Model: [Column("UserName")]public string UserName222 二, 某表多个外键 ...
- MT【230】一道代数不等式
设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+ ...
- 07 zabbix之map拓扑标签中macro应用
zabbix之map拓扑标签中macro应用 请先预习网地图map : 请点击 macro官方文档介绍 : 请点击 1. Map labels(拓扑图标签)主要注意以下Macros(宏): MAC ...
- 【Luogu4931】情侣?给我烧了! 加强版(组合计数)
[Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream& ...
- bzoj1003/luogu1772 物流运输 (dijkstra+dp)
先求出某一段时间[i,j]一直用同一个路径的最短路,乘上天数,记作cost[i,j] 那就可以设f[i]是前i天的最小代价,f[i]=f[j]+cost[j+1,i]+K #include<bi ...
- Tyvj 1518 CPU监控——极恶线段树
题目大意: 给定一个区间及其各个元素的初值,要求支持如下操作: 1.区间加 2.区间赋值 3.查询区间最大值 4.查询区间历史最大值 分析: 容易想到线段树,但是细思恶极(仔细想想恶心到了极点)的是, ...
- easyui-treegrid的案例
1.前台html <%@ page language="java" contentType="text/html; charset=UTF-8" page ...
- Telnet的三种登录方式
Telnet的三种登录方式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.华为创建telnet的三种验证方式 首先,我们可以简单的看一个拓扑图,让我们可以在亦庄的路由器上对双桥 ...
- CentOS下的yum upgrade和yum update区别
说明:生产环境对软件版本和内核版本要求非常精确,别没事有事随便的进行yum update操作!! ! yum update:升级所有包同时也升级软件和系统内核 yum upgrade:只升级所有包,不 ...