(清明培训qwq,明天就要回学校了qwq拒绝)

行吧我洛谷都四天没碰了

解方程【传送门】

算法标签:

(作为一个提高+省选-的题)


丁大佬真的很有幽默感emmm:

#include <cstdio>
const long long Mod = (int)1e9 + ;
const int maxN = + ;
const int maxM = (int)1e6 + ; int N, M;
int arr[maxN]; void Fscan(int &tmpX) {
int Ch = getchar(), F = ' ';
long long tmp = ;
while (Ch < '' || Ch > '') {
F = Ch;
Ch = getchar();
}
while ('' <= Ch && Ch <= '') {
tmp = ((tmp << ) + (tmp << ) + Ch - '') % Mod;
Ch = getchar();
}
tmpX = (int)(F == '-' ? -tmp : tmp);
}
void Read() {
scanf("%d%d", &N, &M);
for (int i = ; i <= N; ++i)
Fscan(arr[i]);
} int T, Que[maxM];
long long Calc(const int &X) {
long long Ans = ;
for (int i = N; i; --i)
Ans = ((Ans + (long long)arr[i]) * (long long)X) % Mod;
Ans = (Ans + (long long)arr[]) % Mod;
return Ans;
}
void Solve() {
for (int i = ; i <= M; ++i)
if (!Calc(i))
Que[++T] = i;
}
int main() {
Read();
Solve();
printf("%d\n", T);
for (int i = ; i <= T; ++i)
printf("%d\n", Que[i]);
return ;
}

【洛谷p2312】解方程的更多相关文章

  1. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  2. 洛谷 P2312 解方程 解题报告

    P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...

  3. 洛谷 P2312 解方程 题解

    P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...

  4. [NOIP2014] 提高组 洛谷P2312 解方程

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  5. 洛谷 P2312 解方程

    题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...

  6. 2018.11.02 洛谷P2312 解方程(数论)

    传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...

  7. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  8. 洛谷P2312解方程

    传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...

  9. 洛谷P2312解方程题解

    题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...

  10. 洛谷P2312 解方程(暴力)

    题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...

随机推荐

  1. javascript的执行过程, 语法错误和运行时错误?

    js的执行错误分为 语法syntaxError,和 runtime error, 首先, js引擎会检查 整个脚本的语法, 如果在检查语法的过程中,发现了错误, 比如括哈不配对, 字符串少了 另一半的 ...

  2. SpringBoot Redis使用fastjson进行序列化

    在使用spring-data-redis,默认情况下是使用org.springframework.data.redis.serializer.JdkSerializationRedisSerializ ...

  3. 【做题】TCSRM592 Div1 500 LittleElephantAndPermutationDiv1——计数&dp

    题意:定义函数\(f(A,B) = \sum_{i=1}^n \max(A_i,B_i)\),其中\(A\)和\(B\)都是长度为\(n\)的排列.给出\(n\)和\(k\),问有多少对\((A,B) ...

  4. Unity3D学习笔记(三十五):Shader着色器(2)- 顶点片元着色器

    Alpha测试 AlphaTest Great:大于 AlphaTest Less:小于 AlphaTest Equal:等于 AlphaTest GEqual:大于等于 AlphaTest LEqu ...

  5. Visual studio 离线安装

    VS2017在下载好安装程序安装的时候,会根据你选择的功能模块来下载所需要的安装程序,而这些安装程序的下载位置并不会让你选择,而是直接放在 C:\ProgramData\Microsoft\Visua ...

  6. Jenkins简介

    Jenkins 是一个开源项目,提供了一种易于使用的持续集成系统,使开发者从繁杂的集成中解脱出来,专注于更为重要的业务逻辑实现上.同时 Jenkins 能实施监控集成中存在的错误,提供详细的日志文件和 ...

  7. 3、My Scripts

    .用for循环批量修改文件扩展名(P240) .使用专业改名命令rename来实现 .通过脚本实现sshd.rsyslog.crond.network.sysstat服务在开机时自动启动(P244) ...

  8. 【测试工程师面试】面试官热衷询问的N个问题

    1. 数据库中左连接右连接的区别 2.JAVA中continue和break的区别 3.Linux中查看某一个进程并且杀死 1.数据库中多表连接,根据不同的表的某一个字段进行关联, 左连接是将左边表全 ...

  9. myeclipse2014配置多个同版本的Tomcat

    引言: 网上有很多myeclipse配置多个Tomcat的教程都可以参考,如[配置多个Tomcat1],[配置多个Tomcat2], 可以直接参考以上两个教程,我这里只对网上的教程中存在的一个点做说明 ...

  10. NYOJ 1277Decimal integer conversion (第九届河南省省赛)

    XiaoMing likes mathematics, and heis just learning how to convert numbers between different bases , ...