【洛谷p2312】解方程
(清明培训qwq,明天就要回学校了qwq拒绝)
行吧我洛谷都四天没碰了
算法标签:
(作为一个提高+省选-的题)
丁大佬真的很有幽默感emmm:
#include <cstdio>
const long long Mod = (int)1e9 + ;
const int maxN = + ;
const int maxM = (int)1e6 + ; int N, M;
int arr[maxN]; void Fscan(int &tmpX) {
int Ch = getchar(), F = ' ';
long long tmp = ;
while (Ch < '' || Ch > '') {
F = Ch;
Ch = getchar();
}
while ('' <= Ch && Ch <= '') {
tmp = ((tmp << ) + (tmp << ) + Ch - '') % Mod;
Ch = getchar();
}
tmpX = (int)(F == '-' ? -tmp : tmp);
}
void Read() {
scanf("%d%d", &N, &M);
for (int i = ; i <= N; ++i)
Fscan(arr[i]);
} int T, Que[maxM];
long long Calc(const int &X) {
long long Ans = ;
for (int i = N; i; --i)
Ans = ((Ans + (long long)arr[i]) * (long long)X) % Mod;
Ans = (Ans + (long long)arr[]) % Mod;
return Ans;
}
void Solve() {
for (int i = ; i <= M; ++i)
if (!Calc(i))
Que[++T] = i;
}
int main() {
Read();
Solve();
printf("%d\n", T);
for (int i = ; i <= T; ++i)
printf("%d\n", Que[i]);
return ;
}
【洛谷p2312】解方程的更多相关文章
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- [NOIP2014] 提高组 洛谷P2312 解方程
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 洛谷 P2312 解方程
题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...
- 2018.11.02 洛谷P2312 解方程(数论)
传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 洛谷P2312解方程
传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...
- 洛谷P2312解方程题解
题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...
- 洛谷P2312 解方程(暴力)
题意 题目链接 Sol 出这种题会被婊死的吧... 首先不难想到暴力判断,然后发现连读入都是个问题. 对于\(a[i]\)取模之后再判断就行了.注意判断可能会出现误差,可以多找几个模数 #includ ...
随机推荐
- (转)Spring Cloud(一)
(二期)22.微服务框架spring cloud(一) [课程22]spirng c...简介.xmind54KB [课程22]spirng cl...架构.xmind0.5MB [课程22]负载均. ...
- mybatis配置文件namespace用法总结
本文为博主原创,未经允许不得转载: 由于在应用过程中,发现namespace在配置文件中的重要性,以及配置的影响,在网上看了很多博客,发现很多人对namespace存在误解, 所以总结一下namesp ...
- PHP变量的值类型和引用类型
PHP 变量在内存中保存的并不直接是值的内容而是值的地址.比如: $a = 1; 从表面上看起来似乎是 $a 直接存储了 1 这个值.但是实际情况是,PHP 解释器创建了变量 $a , 将值 1 存入 ...
- http协议的状态码解释
一些常见的状态码为: 200 – 服务器成功返回网页 404 – 请求的网页不存在 503 – 服务器超时 下面提供 HTTP 状态码的完整列表.点击链接可了解详情.您也可以访问 HTTP 状态码上的 ...
- 使用R语言的RTCGA包获取TCGA数据--转载
转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA TCGA数据源 - R包RTCGA的简单介绍 - 首先安装及加载包 - 指定任意基因 ...
- 封装fetch的使用(包含超时处理)
// 1: 传统fetch操作 fetch('http://facebook.github.io/react-native/movies.json') .then((response) => r ...
- linux 校准时间方法
Debian.Ubuntu 系统安装NTP校时包: apt-get install ntpdate CentOS系统安装NTP校时包: yum install ntp 校时 ...
- 在js文件里调用另一个js文件里的函数
这个是我今天解决的一个小问题,我在创建界面的时候,根据不同的界面需求对应创建了不同的js文件来搭建界面,搭建完毕之后再将各个生成页面的函数汇总到主界面上,通过visibility属性切换显示,这时候出 ...
- Spring boot @Scheduled(cron = "* * * * * *") cron表达式详解
//@Scheduled(cron = "0 0/15 * * * ?") //每15分钟触发一次 //@Scheduled(cron = "5/10 * * * * ? ...
- log4net配置使用
1.配置文件 app.config <?xml version="1.0" encoding="utf-8" ?> <configuratio ...