HDU 6143 17多校8 Killer Names(组合数学)
题目传送:Killer Names
>
> When Marek died in 2 BBY, shortly after the formation of the Alliance, Vader endeavored to recreate his disciple by utilizing the cloning technologies of the planet Kamino. The accelerated cloning process—an enhanced version of the Kaminoan method which allowed for a rapid growth rate within its subjects—was initially imperfect and many clones were too unstable to take Marek's place as the Dark Lord's new apprentice. After months of failure, one particular clone impressed Vader enough for him to hope that this version might become the first success. But as with the others, he inherited Marek's power and skills at the cost of receiving his emotions as well, a side effect of memory flashes used in the training process.
>
> — Wookieepedia
Darth Vader is finally able to stably clone the most powerful soilder in the galaxy: the Starkiller. It is the time of the final strike to destroy the Jedi remnants hidden in every corner of the galaxy.
However, as the clone army is growing, giving them names becomes a trouble. A clone of Starkiller will be given a two-word name, a first name and a last name. Both the first name and the last name have exactly n characters, while each character is chosen from an alphabet of size m. It appears that there are m2n possible names to be used.
Though the clone process succeeded, the moods of Starkiller clones seem not quite stable. Once an unsatisfactory name is given, a clone will become unstable and will try to fight against his own master. A name is safe if and only if no character appears in both the first name and the last name.
Since no two clones can share a name, Darth Vader would like to know the maximum number of clones he is able to create.
Each test case contains two integers n and m (1≤n,m≤2000).
Output the answer mod 109+7
题意:有m个字符,由你来取名字,姓和名。一个字符只能出现在姓或者名,或者不出现。姓和名的长度为n。求可以取多少个不重复的名字。
题解:一开始的思路:姓里面放i个字符,就是i^n;名里面还可以选m-i个字符,就是(m-i)^n;再乘上组合数,答案就是sum(C(m,i)*i^n*(m-i)^n),i∈[1,m]。
上面那个就是公式,写几个后会发现,姓里面有重复计算的部分,要减去这一部分。
dp[i]:m里面取i个放在姓中,这i个都必须出现(i^n包含了出现小于i个字符的情况)。
比如dp[3]=3^n-C(3,2)*(2^n-C(2,1)*1^n)-C(3,1)*1^n。这里好好理解一下,是去重)。
//即可取三个字符的情况 - 可取两个字符的情况 - 可取一个字符的情况,只剩下必须用三个字符的情况
上式转化就是:dp[3]=3^n-C(3,2)*dp[2]-C(3,1)*dp[1]。
所以有递推方程:
dp[i]=i^n-C(i,i-1)*dp[i-1]-C(i,i-2)*dp[i-2]-...-C(i,1)*dp[1]
答案就是sum(C(m,i)*dp[i]*(m-i)^n),i∈[1,m](组合数*姓*名)。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
using namespace std;
const int mod = 1e9+;
const int maxn=;
long long dp[maxn];
long long c[maxn][maxn];
void init()
{
memset(c,,sizeof(c));
for(int i=;i<maxn;i++)
{
c[i][]=;c[i][i]=;
for(int j=;j<i;j++)//杨辉三角的应用
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
}
long long quickmod(long long a,long long b,long long m)
{
long long ans = ;
while(b)//用一个循环从右到左遍历b的所有二进制位
{
if(b&)//判断此时b[i]的二进制位是否为1
{
ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m
b--;//把该为变0
}
b/=;
a = a*a%m;
}
return ans;
}
int main()
{
int T,n,m;
scanf("%d",&T);
init();
while(T--)
{
scanf("%d%d",&n,&m);
memset(dp,,sizeof(dp));
//求dp
for(int i=;i<=m;i++)
{
dp[i]=quickmod(i,n,mod);
for(int j=;j<i;j++)
{
dp[i]=((dp[i]-c[i][j]*dp[j])%mod+mod)%mod;//如果只是单纯%mod会WA
}
}
//求结果
long long ans=,tmp;
for(int i=;i<=m;i++)
{
tmp=(c[m][i]*dp[i]/*姓部分*/)%mod;
ans+=(tmp*quickmod(m-i,n,mod)/*名部分*/)%mod;
ans%=mod;
}
printf("%lld\n",ans);
}
return ;
}
HDU 6143 17多校8 Killer Names(组合数学)的更多相关文章
- HDU 6140 17多校8 Hybrid Crystals(思维题)
题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...
- HDU 6045 17多校2 Is Derek lying?
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others) Memory ...
- HDU 6124 17多校7 Euler theorem(简单思维题)
Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...
- HDU 3130 17多校7 Kolakoski(思维简单)
Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...
- HDU 6038 17多校1 Function(找循环节/环)
Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...
- HDU 6034 17多校1 Balala Power!(思维 排序)
Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...
- HDU 6103 17多校6 Kirinriki(双指针维护)
Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...
- HDU 6098 17多校6 Inversion(思维+优化)
Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...
- HDU 6106 17多校6 Classes(容斥简单题)
Problem Description The school set up three elective courses, assuming that these courses are A, B, ...
随机推荐
- 【PowerDesigner】【3】字段添加注释和默认值
问题:最开始生成的Table,表头有些字段没有 解决方案: 1,打开表(双击左键),点击下图圈起来的图标 2,找到comment(注释),勾选 3,找到default value(默认值),勾选 4, ...
- JQuery Tree插件
转载这个,这个非常的全,有时间可以去学习学习:http://ztreeapi.iteye.com/ http://ztreeapi.iteye.com/blog/2028608
- 牛客练习赛30-A/C
链接:https://ac.nowcoder.com/acm/contest/216/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536K ...
- 在ASP.NET MVC 框架中调用 html文件及解析get请求中的参数值
在ASP.NET MVC 框架中调用 html文件: public ActionResult Index() { using (StreamReader sr = new StreamReader(P ...
- Vue 项目骨架屏注入与实践
作为与用户联系最为密切的前端开发者,用户体验是最值得关注的问题.关于页面loading状态的展示,主流的主要有loading图和进度条两种.除此之外,越来越多的APP采用了“骨架屏”的方式去展示未加载 ...
- Linux安装配置samba教程(CentOS 6.5)
一.服务端安装配置samba 1.1 服务端安装samba yum install -y samba 1.2 创建共享目录并写入配置文件 以/samba为共享目录为例,为了更直观地观测我们在该目录中创 ...
- iptables增加、删除、修改、查询、保存防火墙策略教程
一.查看现有防火墙策略 iptables -L -n iptables -L -n --line-number #--line-number参数会显示策略编号,该编号在删除策略时使用 二.增加防火墙策 ...
- 基本git指令
--git包含命令行界面和图形化界面 1.Git安装之后需要进行一些基本信息设置 a.设置用户名:git config -- global user.name '你再github上注册的用户名' ...
- Ubuntu云服务器下mysql授权远程登陆
1)首先以 root 帐户登陆 MySQL(在授权之前要确保3306端口开放)2)创建远程登陆用户并授权 > grant all PRIVILEGES on discuz.* to zhan@' ...
- How can I perform the likelihood ratio, Wald, and Lagrange multiplier (score) test in Stata?
http://www.ats.ucla.edu/stat/stata/faq/nested_tests.htm The likelihood ratio (lr) test, Wald test, ...