题目传送:Killer Names

Problem Description
> Galen Marek, codenamed Starkiller, was a male Human apprentice of the Sith Lord Darth Vader. A powerful Force-user who lived during the era of the Galactic Empire, Marek originated from the Wookiee home planet of Kashyyyk as the sole offspring of two Jedi Knights—Mallie and Kento Marek—who deserted the Jedi Order during the Clone Wars. Following the death of his mother, the young Marek's father was killed in battle by Darth Vader. Though only a child, Marek possessed an exceptionally strong connection to the Force that the Dark Lord of the Sith sought to exploit.
>
> When Marek died in 2 BBY, shortly after the formation of the Alliance, Vader endeavored to recreate his disciple by utilizing the cloning technologies of the planet Kamino. The accelerated cloning process—an enhanced version of the Kaminoan method which allowed for a rapid growth rate within its subjects—was initially imperfect and many clones were too unstable to take Marek's place as the Dark Lord's new apprentice. After months of failure, one particular clone impressed Vader enough for him to hope that this version might become the first success. But as with the others, he inherited Marek's power and skills at the cost of receiving his emotions as well, a side effect of memory flashes used in the training process.
>
> — Wookieepedia

Darth Vader is finally able to stably clone the most powerful soilder in the galaxy: the Starkiller. It is the time of the final strike to destroy the Jedi remnants hidden in every corner of the galaxy.

However, as the clone army is growing, giving them names becomes a trouble. A clone of Starkiller will be given a two-word name, a first name and a last name. Both the first name and the last name have exactly n characters, while each character is chosen from an alphabet of size m. It appears that there are m2n possible names to be used.

Though the clone process succeeded, the moods of Starkiller clones seem not quite stable. Once an unsatisfactory name is given, a clone will become unstable and will try to fight against his own master. A name is safe if and only if no character appears in both the first name and the last name.

Since no two clones can share a name, Darth Vader would like to know the maximum number of clones he is able to create.

 
Input
The First line of the input contains an integer T (T≤10), denoting the number of test cases.

Each test case contains two integers n and m (1≤n,m≤2000).

 
Output
For each test case, output one line containing the maximum number of clones Vader can create.

Output the answer  mod 109+7

 
Sample Input
2
3 2
2 3
 
Sample Output
2
18
 
以下题意和题解摘自此博客。

题意:有m个字符,由你来取名字,姓和名。一个字符只能出现在姓或者名,或者不出现。姓和名的长度为n。求可以取多少个不重复的名字。

题解:一开始的思路:姓里面放i个字符,就是i^n;名里面还可以选m-i个字符,就是(m-i)^n;再乘上组合数,答案就是sum(C(m,i)*i^n*(m-i)^n),i∈[1,m]。

上面那个就是公式,写几个后会发现,姓里面有重复计算的部分,要减去这一部分。

dp[i]:m里面取i个放在姓中,这i个都必须出现(i^n包含了出现小于i个字符的情况)。

比如dp[3]=3^n-C(3,2)*(2^n-C(2,1)*1^n)-C(3,1)*1^n。这里好好理解一下,是去重)。

//即可取三个字符的情况 - 可取两个字符的情况 - 可取一个字符的情况,只剩下必须用三个字符的情况

上式转化就是:dp[3]=3^n-C(3,2)*dp[2]-C(3,1)*dp[1]。

所以有递推方程:

dp[i]=i^n-C(i,i-1)*dp[i-1]-C(i,i-2)*dp[i-2]-...-C(i,1)*dp[1]

答案就是sum(C(m,i)*dp[i]*(m-i)^n),i∈[1,m](组合数*姓*名)。

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
using namespace std;
const int mod = 1e9+;
const int maxn=;
long long dp[maxn];
long long c[maxn][maxn];
void init()
{
memset(c,,sizeof(c));
for(int i=;i<maxn;i++)
{
c[i][]=;c[i][i]=;
for(int j=;j<i;j++)//杨辉三角的应用
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
}
long long quickmod(long long a,long long b,long long m)
{
long long ans = ;
while(b)//用一个循环从右到左遍历b的所有二进制位
{
if(b&)//判断此时b[i]的二进制位是否为1
{
ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m
b--;//把该为变0
}
b/=;
a = a*a%m;
}
return ans;
}
int main()
{
int T,n,m;
scanf("%d",&T);
init();
while(T--)
{
scanf("%d%d",&n,&m);
memset(dp,,sizeof(dp));
//求dp
for(int i=;i<=m;i++)
{
dp[i]=quickmod(i,n,mod);
for(int j=;j<i;j++)
{
dp[i]=((dp[i]-c[i][j]*dp[j])%mod+mod)%mod;//如果只是单纯%mod会WA
}
}
//求结果
long long ans=,tmp;
for(int i=;i<=m;i++)
{
tmp=(c[m][i]*dp[i]/*姓部分*/)%mod;
ans+=(tmp*quickmod(m-i,n,mod)/*名部分*/)%mod;
ans%=mod;
}
printf("%lld\n",ans);
}
return ;
}

HDU 6143 17多校8 Killer Names(组合数学)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  3. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  4. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  5. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

  6. HDU 6034 17多校1 Balala Power!(思维 排序)

    Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He want ...

  7. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  8. HDU 6098 17多校6 Inversion(思维+优化)

    Problem Description Give an array A, the index starts from 1.Now we want to know Bi=maxi∤jAj , i≥2. ...

  9. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

随机推荐

  1. Oracle 数据库中查看表空间的2种方法

    在Oracle数据库中查看表空间使用状况是我们在实际应用中经常涉及到的,以下的内容就就是对Oracle 数据库中查看表空间使用状况时所要用到的SQL的描述,希望你能从中获得自己想要的东西. Oracl ...

  2. JAVA正则表达式:Pattern、Matcher、String

    java.util.regex是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包.它包括两个类:Pattern和Matcher Pattern 一个Pattern是一个正则表达式经编译后的表 ...

  3. Spring注解之@Lazy注解

    @Lazy用于指定该Bean是否取消预初始化.主要用于修饰Spring Bean类,用于指定该Bean的预初始化行为, 使用该Annotation时可以指定一个boolean型的value属性,该属性 ...

  4. git 连接github的配置

    这段时间要先在git上开发,上传代码到github上,所以首先需配置本地的git和github. 这几篇文章都不错,可以参考一下,大体的配置都很清楚. 1:https://blog.csdn.net/ ...

  5. Script to Collect Log File Sync Diagnostic Information (lfsdiag.sql) (文档 ID 1064487.1)

    the article from :http://m.blog.itpub.net/31393455/viewspace-2130875/ Script to Collect Log File Syn ...

  6. php 循环数组问题

    $a = array('abe','ben','cam'); //foreach遍历数组时,实际上是遍历的数组的一个拷贝,并且在开始遍历之前会把指针指向拷贝的开始:,根据cow机制,写时,重新复制一份 ...

  7. ActiveMQ 的线程池

    ActiveMQ 的线程池实质上也是 ThreadPoolExecutor,不过它的任务模型有自己的特点,我们先看一个例子: public static void main(String[] args ...

  8. Linux+Apache+MySQL+PHP配置教程

    有时我们只想搭建LAMP环境做个测试,并不在意目录的和配置是否规范,本教程正是为此想法而写能简单的就不复杂实现最快地搭建LAMP:操作系统为CentOS6.5. 1.安装Apache yum inst ...

  9. samba共享文件夹设置

    sudo apt-get install samba(4) mkdir /home/用户名/share (新建share文件夹) sudo cp /etc/samba/smb.conf /etc/sa ...

  10. 蓝桥杯—BASIC-25 回形取数

    题目:回形取数就是沿矩阵的边取数,若当前方向上无数可取或已经取过,则左转90度.一开始位于矩阵左上角,方向向下.输入格式 输入第一行是两个不超过200的正整数m, n,表示矩阵的行和列.接下来m行每行 ...