题意

给定一棵 \(n\) 个节点的树,每个节点有点权。完成 \(q\) 个操作——操作分两种:修改点 \(x\) 的点权、查询与 \(x\) 距离小于等于 \(d\) 的权值总和。

\(1 \leq n,q \leq 10^5\)

思路

从最简单的情况分析——只有一次查询。当然一遍 \(O(n)\) 的 \(\text{dfs}\) 可以直接写,不过要用点分治写的话,\(\text{solve}\) 函数直接容斥一下就可以了。

如果多个询问呢?其实在回答关于点 \(x\) 的询问时,其实只需要计算管辖 \(x\) 的所有重心的答案。我们只需要将点分治的过程记录下来,查询只查管辖 \(x\) 的重心,就可以在 \(\log n\) 的复杂度内回答一次询问了。

具体的实现每道题略有区别,但具体思路大致相同。别忘了我们是从一次查询作优化,那么我们对于一个点,记录它到重心的距离;对于每个重心开一个数组,表示管辖范围内距离为 \(d\) 的节点权值总和,然后前缀和一下就变成了距离小于等于 \(d\) 的权值总和,由于还有容斥的部分,故符号也要记录。若节点 \(x\) 询问为 \(d\) ,对于某一级重心 \(C\) ,距离为 \(dis\) ,对应前缀和数组 \(A\) ,对应符号为 \(s\ (s\in\{1,-1\})\) ,那么 \(x\) 与 \(C\) 的贡献就是 \(s\cdot A[d-dis]\) 。

而带上修改其实也没什么区别,只要把前缀和换成树状数组,然后每次修改,对于某一级重心 \(C\) ,在树状数组的 \(dis\) 位置做修改即可。

动态点分治就是把点分治的过程用适当容器去维护的算法。

代码

#include<bits/stdc++.h>
#define FOR(i,x,y) for(int i=(x),i##END=(y);i<=i##END;++i)
#define DOR(i,x,y) for(int i=(x),i##END=(y);i>=i##END;--i)
typedef long long LL;
using namespace std;
const int N=1e5+5;
template<const int maxn,const int maxm>struct Linked_list
{
int head[maxn],to[maxm],nxt[maxm],tot;
Linked_list(){clear();}
void clear(){memset(head,-1,sizeof(head));tot=0;}
void add(int u,int v){to[++tot]=v,nxt[tot]=head[u],head[u]=tot;}
#define EOR(i,G,u) for(int i=G.head[u];~i;i=G.nxt[i])
};
struct FenwickTree
{
#define lowbit(x) ((x)&-(x))
vector<int>c;int n;
void build(int _n){c.clear();FOR(i,0,n=_n+1)c.push_back(0);}
void update(int k,int val){for(k++;k<=n;k+=lowbit(k))c[k]+=val;}
int query(int k){int res=0;for(k=min(k+1,n);k>0;k^=lowbit(k))res+=c[k];return res;}
#undef lowbit
};
Linked_list<N,N<<1>G;
FenwickTree FT[N*2];int Fc;
int Fid[N][45],dis[N][45],lv[N];bool sgn[N][45];
int sz[N];bool mark[N];
int pw[N],n,q; void CFS(int u,int f,int tot,int &C,int &Mi)
{
sz[u]=1;int res=0;
EOR(i,G,u)
{
int v=G.to[i];
if(v==f||mark[v])continue;
CFS(v,u,tot,C,Mi);
sz[u]+=sz[v];
res=max(res,sz[v]);
}
res=max(res,tot-sz[u]);
if(res<Mi)C=u,Mi=res;
}
void dfs_init(int u,int f,int D,bool s)
{
Fid[u][++lv[u]]=Fc,dis[u][lv[u]]=D,sgn[u][lv[u]]=s;
EOR(i,G,u)
{
int v=G.to[i];
if(v==f||mark[v])continue;
dfs_init(v,u,D+1,s);
}
}
int dfs_dep(int u,int f,int d)
{
int res=d;
EOR(i,G,u)
{
int v=G.to[i];
if(v==f||mark[v])continue;
res=max(res,dfs_dep(v,u,d+1));
}
return res;
}
void dac(int u,int tot)
{
int Mi=1e9;
CFS(u,0,tot,u,Mi);
mark[u]=1;
FT[++Fc].build(dfs_dep(u,0,0));
dfs_init(u,0,0,1);
EOR(i,G,u)
{
int v=G.to[i];
if(mark[v])continue;
FT[++Fc].build(dfs_dep(v,u,1));
dfs_init(v,u,1,0);
dac(v,sz[u]>sz[v]?sz[v]:tot-sz[u]);
}
} void update(int u,int val)
{
FOR(i,1,lv[u])
{
int v=Fid[u][i],w=dis[u][i];
FT[v].update(w,val);
}
}
int query(int u,int d)
{
int res=0;
FOR(i,1,lv[u])
{
int v=Fid[u][i],w=dis[u][i];bool s=sgn[u][i];
if(s)res+=FT[v].query(d-w);
else res-=FT[v].query(d-w);
}
return res;
} int main()
{
while(~scanf("%d%d",&n,&q))
{
G.clear();
FOR(i,1,n)scanf("%d",&pw[i]);
FOR(i,1,n-1)
{
int u,v;
scanf("%d%d",&u,&v);
G.add(u,v),G.add(v,u);
}
Fc=0;
memset(lv,0,sizeof(lv));
memset(mark,0,sizeof(mark));
dac(1,n);
FOR(i,1,n)update(i,pw[i]);
while(q--)
{
char str[5];int x,y;
scanf("%s%d%d",str,&x,&y);
if(str[0]=='!')
{
update(x,y-pw[x]);
pw[x]=y;
}
else if(str[0]=='?')printf("%d\n",query(x,y));
}
}
return 0;
}

HDU 4918 Query on the subtree(动态点分治+树状数组)的更多相关文章

  1. 【BZOJ-3730】震波 动态点分治 + 树状数组

    3730: 震波 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 626  Solved: 149[Submit][Status][Discuss] D ...

  2. bzoj 4372 烁烁的游戏——动态点分治+树状数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4372 和 bzoj 3070 震波 是一个套路.注意区间修改的话,树状数组不能表示 dis ...

  3. bzoj 3730 震波——动态点分治+树状数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3730 查询一个点可以转化为查询点分树上自己到根的路径上每个点对应范围答案.可用树状数组 f ...

  4. bzoj 4372 烁烁的游戏 —— 动态点分治+树状数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4372 本以为和 bzoj3730 一样,可以直接双倍经验了: 但要注意一下,树状数组不能查询 ...

  5. bzoj 3730 震波 —— 动态点分治+树状数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3730 建点分树,每个点记两个树状数组,存它作为重心管辖的范围内,所有点到它的距离情况和到它在 ...

  6. luogu 5311 [Ynoi2011]D1T3 动态点分治+树状数组

    我这份代码已经奇怪到一定程度了~ 洛谷上一直 $TLE$,但是本地造了几个数据都过了. 简单说一下题解: 先建出来点分树. 对于每一个询问,在点分树中尽可能向上跳祖先,看是否能够处理这个询问. 找到最 ...

  7. BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组

    BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一 ...

  8. [BZOJ 3295] [luogu 3157] [CQOI2011]动态逆序对(树状数组套权值线段树)

    [BZOJ 3295] [luogu 3157] [CQOI2011] 动态逆序对 (树状数组套权值线段树) 题面 给出一个长度为n的排列,每次操作删除一个数,求每次操作前排列逆序对的个数 分析 每次 ...

  9. 【BZOJ 1901】【Zju 2112】 Dynamic Rankings 动态K值 树状数组套主席树模板题

    达神题解传送门:http://blog.csdn.net/dad3zz/article/details/50638360 说一下我对这个模板的理解: 看到这个方法很容易不知所措,因为动态K值需要套树状 ...

随机推荐

  1. [博客迁移]探索Windows Azure 监控和自动伸缩系列3 - 启用Azure监控扩展收集自定义监控数据

    上一篇我们介绍了获取Azure的监控指标和监控数据: http://www.cnblogs.com/teld/p/5113376.html 本篇我们继续:监控虚拟机的自定义性能计数器. 随着我们应用规 ...

  2. 【Hadoop学习之八】MapReduce开发

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 伪分布式:HDFS和YARN 伪分 ...

  3. 使用AJAX技术发送异步请求,HTTP服务端推送

    使用AJAX技术发送异步请求 什么是AJAX AJAX指一步Javascript和XML(Asynchronous JavaScript And XML),它是一些列技术的组合,简单来说AJAX基于X ...

  4. window下nodejs用nodemon启动koa2项目(用cmd启动不了,要用Git Bash Here 启动才可以)

    window下nodejs用nodemon启动koa2项目(用cmd启动不了,要用Git Bash Here 启动才可以)nodemon --watch 'app/**/*' -e ts --exec ...

  5. JSVC技术

    如果我们的某个项目时web项目,我们很容易就可以放置在Tomcat中进行启动. 可是如果我们的项目不是web项目,我们又需要在单独启动时,我们又应该怎么办呢?     引出了我们今天的主人公:JSVC ...

  6. var_dump()函数输出不完整,有省略号?解决办法

    php开发环境里,安装了xdebug模块后,var_dump()输出的结果将比较易于查看,但默认情况下,var_dump() 输出的结果将有所变化:过多的数组元素不再显示,字符串变量将只显示前N个字符 ...

  7. awk中截取IP字段

    由于文本的特殊性,IP字段可能并不是在特定的字段中. 借助awk的match()函数进行匹配截取 awk --re-interval '($0 ~ "xxx"){match($0, ...

  8. oracle 12c多租户下的日常操作变化

    Oracle 12c创建用户时出现“ORA-65096: invalid common user or role name”的错误 在oracle中,引入了多租户概念,以前是一个instance对应一 ...

  9. Kali系列之ettercap欺骗

    ettercap在局域网中使用欺骗, 捕获对象浏览器中的图片. 环境 攻击方:kali linux, ip:192.168.137.129 目标方ip:192.168.137.130 路由器:192. ...

  10. linux下安装与部署redis

    一.Redis介绍 Redis是当前比较热门的NOSQL系统之一,它是一个key-value存储系统.和Memcache类似,但很大程度补偿了Memcache的不足,它支持存储的value类型相对更多 ...