现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了。

想学Vector Calculus的话,推荐《Vector Calculus, Linear Algebra, and Differential Forms》,网上有第一版的电子版。虽然出到了第五版,但貌似vector caculus 和differential forms的部分没有什么改动。所以个人觉得用第一版学习vector caculus足以。

-----------------------------------

http://book.douban.com/annotation/36251494/

<<Vector Calculus>>
by Paul C, Matthews

P4

Since the quantity of |b|*cosθ represents the component of the vector b in thedirection of the vector a, the scalar a * b can be thought of as the magnitudeof a multiplied by the component of b in the direction of a

P7

the general form of the equation of a plane is: r * a = constant.

P11

| e1 e2 e3 |
a x b=| a1 a2 a3 |
          | b1 b2 b3 |

v = Ω x r

P24

The equation of a line is: r = a + λu

The second equation of a line is: r x u = b = a x u

----------------------------------------------------

1.4 Scalar triple product ([a, b, c])

The dot and the cross can be interchanged:[a, b, c]≡a * b x c = a x b * c

The vectors a, b and c can be permuted cyclically:a * b x c = b * c x a = c * a x b

The scalar triple product can be written in the form of a determinant:

| a1 a2 a3 |
a * b x c=| b1 b2 b3 |
               | c1 c2 c3 |

If any two of the vectors are equal, the scalar triple product is zero.

--------------------------------------------------------

1.5 Vector triple product     a x (b x c)

a x (b x c) = (a * c)*b - (a * b)*c

(a x b) x c = -(b * c)*a + (c * a)*b

--------------------------------------------------------

1.6 Scalar fields and vector fields

A scalar or vector quantity is said be a field if it is a function of position.

--------------------------------------------------------

2.2.3 Conservative vector fields

A vector field F is said to be conservative if it has the property that the line integral of F around any closed curve C is zero:

An equivalent definition is that F is conservative if the line integral of Falong a curve only depends on the endpoints of the curve, not on the pathtaken by the curve

--------------------------------------------------------

2.3.2

3.1.2 Taylor series in more than one variable

3.2 Gradient of a scalar field

The symbol ∇ can be interpreted as a vector differential operator,where the term operator means that ∇ only has a meaning when it acts on some other quantity.

Theorem 3.1

Suppose that a vector field F is related to a scalar field Φ by F = ∇Φ and ∇ exists everywhere in some region D. Then F is conservative within D.Conversely, if F is conservative, then F can be written as the gradient of a scalar field, F = ∇Φ.

If a vector field F is conservative, the corresponding scalar field Φ which obeys F = ∇Φ is called the potential(势能) for F.

--------------------------------------------------

3.3.2 Laplacian of a scalar field


3.3.2 Laplacian of a scalar field

4.3 The alternating tensor εijk

5.1.1 Conservation of mass for a fluid

6.1 Orthogonal curvilinear coordinates

P100

Suppose a transformation is carried out from a Cartesian coordinate system (x1, x2, x3) to another coordinate system (u1, u2, u3)

e1 =(∂x/∂u1) / h1, h1 = | ∂x/∂u1 |

e2 =(∂x/∂u2) / h2, h2 = | ∂x/∂u2 |

e3 =(∂x/∂u3) / h3, h3 = | ∂x/∂u3 |

dS = h1 * h2 * du1 * du2

dV = h1 * h2 * h3 * du1 * du2 * du3

------------------------------------------------------------------

相关内容在《微积分学教程(第三卷)》(by 菲赫金哥尔茨)里使用Jacobi式阐述的:

16章

$4. 二重积分中的变量变换

603.平面区域的变换

604.例1)(极坐标的例子)

605.曲线坐标中面积的表示法

607.几何推演

609.二重积分中的变量变换

17章 曲面面积,曲面积分

619. 例2 (引入A,B,C)

626 曲面面积的存在及其计算

629 例14)球面极坐标的计算

18章 三重积分及多重积分

$3 三重积分中的变量变换

655. 空间的变换及曲线坐标

656 例1 圆柱坐标,例2球坐标

657 曲线坐标下的体积表示法 (得出曲面坐标下的体积元素)

659 几何推演

661 三重积分中的变量变换

------------------------------------------------------------------

Summary of Chapter 6

The system (u1, u2, u3) is orthogonal if ei * ej = δij.

------------------------------------

7. Cartesian Tensors

7.1 Coordinate transformations

A matrix with this property, that its inverse is equal to its transpose, is said to be orthogonal。

So far we have only considered a two-dimensional rotation of coordinates. Consider now a general three-dimensional rotation. For a position vector x = x1e1 + x2e2 + x3e3,

x' = e'i * x (x在e'i上的投影) = e'i * (e1*x1 + e2*x2 + e3*x3) = e'i * ei*xi

xi = Lji * x'j ..........................(7.6)

7.2 Vectors and scalars

A quantity is a tensor if each of the free suffices transforms according to the rule (7.4).Lij * Lkj = δik

7.3.3 Isotropic tensors

The two tensors δij and εijk have a special property. Their components are the same in all coordinate systems. A tensor with this property is said to be isotropic.

7.4 Physical examples of tensors

7.4.1 Ohm's law

This is why δik is said to be an isotropic tensor: it represents the relationship between two vectors that are always parallel, regardless of their direction.

----------------------------------------------

8 Applications of Vector Calculus

----------------------------------------------

----------------------------------------------

8.5 Fluid mechanics

----------------------------------------------

----------------------------------------------

----------------------------------------------

----------------------------------------------

Example 8.12

Choosing the x-axis to be parallel to the channel walls, the velocity u hasthe form u = (u, 0, 0). As the fluid is incompressible(所有点的速度(沿x轴)相同), ∇u = 0, so ∂u/∂x = 0.

<<Vector Calculus>>笔记的更多相关文章

  1. HTML+CSS笔记 CSS笔记集合

    HTML+CSS笔记 表格,超链接,图片,表单 涉及内容:表格,超链接,图片,表单 HTML+CSS笔记 CSS入门 涉及内容:简介,优势,语法说明,代码注释,CSS样式位置,不同样式优先级,选择器, ...

  2. CSS笔记--选择器

    CSS笔记--选择器 mate的使用 <meta charset="UTF-8"> <title>Document</title> <me ...

  3. HTML+CSS笔记 CSS中级 一些小技巧

    水平居中 行内元素的水平居中 </a></li> <li><a href="#">2</a></li> &l ...

  4. HTML+CSS笔记 CSS中级 颜色&长度值

    颜色值 在网页中的颜色设置是非常重要,有字体颜色(color).背景颜色(background-color).边框颜色(border)等,设置颜色的方法也有很多种: 1.英文命令颜色 语法: p{co ...

  5. HTML+CSS笔记 CSS中级 缩写入门

    盒子模型代码简写 回忆盒模型时外边距(margin).内边距(padding)和边框(border)设置上下左右四个方向的边距是按照顺时针方向设置的:上右下左. 语法: margin:10px 15p ...

  6. HTML+CSS笔记 CSS进阶再续

    CSS的布局模型 清楚了CSS 盒模型的基本概念. 盒模型类型, 我们就可以深入探讨网页布局的基本模型了.布局模型与盒模型一样都是 CSS 最基本. 最核心的概念. 但布局模型是建立在盒模型基础之上, ...

  7. HTML+CSS笔记 CSS进阶续集

    元素分类 在CSS中,html中的标签元素大体被分为三种不同的类型:块状元素.内联元素(又叫行内元素)和内联块状元素. 常用的块状元素有: <div>.<p>.<h1&g ...

  8. HTML+CSS笔记 CSS进阶

    文字排版 字体 我们可以使用css样式为网页中的文字设置字体.字号.颜色等样式属性. 语法: body{font-family:"宋体";} 这里注意不要设置不常用的字体,因为如果 ...

  9. HTML+CSS笔记 CSS入门续集

    继承 CSS的某些样式是具有继承性的,那么什么是继承呢?继承是一种规则,它允许样式不仅应用于某个特定html标签元素,而且应用于其后代(标签). 语法: p{color:red;} <p> ...

  10. HTML+CSS笔记 CSS入门

    简介: </span>年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的<span>脚本解释程序</span>,作为ABC语言的一种继承. & ...

随机推荐

  1. C++深拷贝与浅拷贝

    当用一个已初始化过了的自定义类类型对象去初始化另一个新构造的对象的时候,拷贝构造函数就会被自动调用.也就是说,当类的对象需要拷贝时,拷贝构造函数将会被调用.以下情况都会调用拷贝构造函数: (1)一个对 ...

  2. ES5 对数组方法的扩展 以及 正则表达式

    ES5 对数组的扩展 forEach map some every indexOf lastIndexOf forEach 与 map 语法: 数组.forEach(function ( v, i ) ...

  3. api将一统江湖,再无app

    api的出现,使人们可以通过各种软硬件设备获取所需服务,而不需要安装臃肿的app:今后的智能设备将不再依赖软件.操作系统和硬件,或许一台51单片机都可以提供给用户所需信息.当然连名字都可以简单到不叫a ...

  4. jQuery外部框架浅析

    (function(window, undefined) {         var jQuery = ...         ...             window.jQuery = wind ...

  5. C#异常语句

    try: 用于检查发生的异常,并帮助发送任何可能的异常. catch: 以控制权更大的方式处理错误,可以有多个catch子句. finally :无论是否引发了异常,finally的代码块都将被执行. ...

  6. mongodb C# 驱动查询

    INoSqlProvider provider = NoSqlManager.Create("CloudTable"); IMongoCollection<FormMongo ...

  7. Tomcat version 7.0 only support J2EE 1.2。。。。。。。

    刚开始使用eclipse编程,换了eclipse版本后导入项目,出现下的报错

  8. day04关于MySqL—Android小白的学习笔记

    Mysql入门 1. 数据库基本知识(了解) 1.1.数据库介绍 1.1.1.什么是数据库?数据库的作用是什么? 数据库就是存储数据的仓库,其本质是一个文件系统,数据按照特定的格式将数据存储起来,用户 ...

  9. C#小小总结(面向对象)

    前言 学c#也有一年的时间了 以前零零散散的记的一些笔记啊 随便之类的 没有写过比较整体一点的总结 所以现在写一个小小的总结 内容 一.面向对象 相信刚开始接触编程的童鞋都被这个概念弄糊涂过,对于刚刚 ...

  10. linux下JDK1.7安装

    http://mnt.conf.blog.163.com/blog/static/115668258201210793915876/ 一.软件下载1.下载JDK(下面分别是32位系统和64位系统下的版 ...