现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了。

想学Vector Calculus的话,推荐《Vector Calculus, Linear Algebra, and Differential Forms》,网上有第一版的电子版。虽然出到了第五版,但貌似vector caculus 和differential forms的部分没有什么改动。所以个人觉得用第一版学习vector caculus足以。

-----------------------------------

http://book.douban.com/annotation/36251494/

<<Vector Calculus>>
by Paul C, Matthews

P4

Since the quantity of |b|*cosθ represents the component of the vector b in thedirection of the vector a, the scalar a * b can be thought of as the magnitudeof a multiplied by the component of b in the direction of a

P7

the general form of the equation of a plane is: r * a = constant.

P11

| e1 e2 e3 |
a x b=| a1 a2 a3 |
          | b1 b2 b3 |

v = Ω x r

P24

The equation of a line is: r = a + λu

The second equation of a line is: r x u = b = a x u

----------------------------------------------------

1.4 Scalar triple product ([a, b, c])

The dot and the cross can be interchanged:[a, b, c]≡a * b x c = a x b * c

The vectors a, b and c can be permuted cyclically:a * b x c = b * c x a = c * a x b

The scalar triple product can be written in the form of a determinant:

| a1 a2 a3 |
a * b x c=| b1 b2 b3 |
               | c1 c2 c3 |

If any two of the vectors are equal, the scalar triple product is zero.

--------------------------------------------------------

1.5 Vector triple product     a x (b x c)

a x (b x c) = (a * c)*b - (a * b)*c

(a x b) x c = -(b * c)*a + (c * a)*b

--------------------------------------------------------

1.6 Scalar fields and vector fields

A scalar or vector quantity is said be a field if it is a function of position.

--------------------------------------------------------

2.2.3 Conservative vector fields

A vector field F is said to be conservative if it has the property that the line integral of F around any closed curve C is zero:

An equivalent definition is that F is conservative if the line integral of Falong a curve only depends on the endpoints of the curve, not on the pathtaken by the curve

--------------------------------------------------------

2.3.2

3.1.2 Taylor series in more than one variable

3.2 Gradient of a scalar field

The symbol ∇ can be interpreted as a vector differential operator,where the term operator means that ∇ only has a meaning when it acts on some other quantity.

Theorem 3.1

Suppose that a vector field F is related to a scalar field Φ by F = ∇Φ and ∇ exists everywhere in some region D. Then F is conservative within D.Conversely, if F is conservative, then F can be written as the gradient of a scalar field, F = ∇Φ.

If a vector field F is conservative, the corresponding scalar field Φ which obeys F = ∇Φ is called the potential(势能) for F.

--------------------------------------------------

3.3.2 Laplacian of a scalar field


3.3.2 Laplacian of a scalar field

4.3 The alternating tensor εijk

5.1.1 Conservation of mass for a fluid

6.1 Orthogonal curvilinear coordinates

P100

Suppose a transformation is carried out from a Cartesian coordinate system (x1, x2, x3) to another coordinate system (u1, u2, u3)

e1 =(∂x/∂u1) / h1, h1 = | ∂x/∂u1 |

e2 =(∂x/∂u2) / h2, h2 = | ∂x/∂u2 |

e3 =(∂x/∂u3) / h3, h3 = | ∂x/∂u3 |

dS = h1 * h2 * du1 * du2

dV = h1 * h2 * h3 * du1 * du2 * du3

------------------------------------------------------------------

相关内容在《微积分学教程(第三卷)》(by 菲赫金哥尔茨)里使用Jacobi式阐述的:

16章

$4. 二重积分中的变量变换

603.平面区域的变换

604.例1)(极坐标的例子)

605.曲线坐标中面积的表示法

607.几何推演

609.二重积分中的变量变换

17章 曲面面积,曲面积分

619. 例2 (引入A,B,C)

626 曲面面积的存在及其计算

629 例14)球面极坐标的计算

18章 三重积分及多重积分

$3 三重积分中的变量变换

655. 空间的变换及曲线坐标

656 例1 圆柱坐标,例2球坐标

657 曲线坐标下的体积表示法 (得出曲面坐标下的体积元素)

659 几何推演

661 三重积分中的变量变换

------------------------------------------------------------------

Summary of Chapter 6

The system (u1, u2, u3) is orthogonal if ei * ej = δij.

------------------------------------

7. Cartesian Tensors

7.1 Coordinate transformations

A matrix with this property, that its inverse is equal to its transpose, is said to be orthogonal。

So far we have only considered a two-dimensional rotation of coordinates. Consider now a general three-dimensional rotation. For a position vector x = x1e1 + x2e2 + x3e3,

x' = e'i * x (x在e'i上的投影) = e'i * (e1*x1 + e2*x2 + e3*x3) = e'i * ei*xi

xi = Lji * x'j ..........................(7.6)

7.2 Vectors and scalars

A quantity is a tensor if each of the free suffices transforms according to the rule (7.4).Lij * Lkj = δik

7.3.3 Isotropic tensors

The two tensors δij and εijk have a special property. Their components are the same in all coordinate systems. A tensor with this property is said to be isotropic.

7.4 Physical examples of tensors

7.4.1 Ohm's law

This is why δik is said to be an isotropic tensor: it represents the relationship between two vectors that are always parallel, regardless of their direction.

----------------------------------------------

8 Applications of Vector Calculus

----------------------------------------------

----------------------------------------------

8.5 Fluid mechanics

----------------------------------------------

----------------------------------------------

----------------------------------------------

----------------------------------------------

Example 8.12

Choosing the x-axis to be parallel to the channel walls, the velocity u hasthe form u = (u, 0, 0). As the fluid is incompressible(所有点的速度(沿x轴)相同), ∇u = 0, so ∂u/∂x = 0.

<<Vector Calculus>>笔记的更多相关文章

  1. HTML+CSS笔记 CSS笔记集合

    HTML+CSS笔记 表格,超链接,图片,表单 涉及内容:表格,超链接,图片,表单 HTML+CSS笔记 CSS入门 涉及内容:简介,优势,语法说明,代码注释,CSS样式位置,不同样式优先级,选择器, ...

  2. CSS笔记--选择器

    CSS笔记--选择器 mate的使用 <meta charset="UTF-8"> <title>Document</title> <me ...

  3. HTML+CSS笔记 CSS中级 一些小技巧

    水平居中 行内元素的水平居中 </a></li> <li><a href="#">2</a></li> &l ...

  4. HTML+CSS笔记 CSS中级 颜色&长度值

    颜色值 在网页中的颜色设置是非常重要,有字体颜色(color).背景颜色(background-color).边框颜色(border)等,设置颜色的方法也有很多种: 1.英文命令颜色 语法: p{co ...

  5. HTML+CSS笔记 CSS中级 缩写入门

    盒子模型代码简写 回忆盒模型时外边距(margin).内边距(padding)和边框(border)设置上下左右四个方向的边距是按照顺时针方向设置的:上右下左. 语法: margin:10px 15p ...

  6. HTML+CSS笔记 CSS进阶再续

    CSS的布局模型 清楚了CSS 盒模型的基本概念. 盒模型类型, 我们就可以深入探讨网页布局的基本模型了.布局模型与盒模型一样都是 CSS 最基本. 最核心的概念. 但布局模型是建立在盒模型基础之上, ...

  7. HTML+CSS笔记 CSS进阶续集

    元素分类 在CSS中,html中的标签元素大体被分为三种不同的类型:块状元素.内联元素(又叫行内元素)和内联块状元素. 常用的块状元素有: <div>.<p>.<h1&g ...

  8. HTML+CSS笔记 CSS进阶

    文字排版 字体 我们可以使用css样式为网页中的文字设置字体.字号.颜色等样式属性. 语法: body{font-family:"宋体";} 这里注意不要设置不常用的字体,因为如果 ...

  9. HTML+CSS笔记 CSS入门续集

    继承 CSS的某些样式是具有继承性的,那么什么是继承呢?继承是一种规则,它允许样式不仅应用于某个特定html标签元素,而且应用于其后代(标签). 语法: p{color:red;} <p> ...

  10. HTML+CSS笔记 CSS入门

    简介: </span>年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的<span>脚本解释程序</span>,作为ABC语言的一种继承. & ...

随机推荐

  1. TextFieldDelegate

    #import "AppDelegate.h" @interface AppDelegate ()<UITextFieldDelegate> @end @impleme ...

  2. 如何开启ubuntu的SSH服务

    buntu默认并没有安装ssh服务,如果通过ssh链接ubuntu,需要自己手动安装ssh-server,然而SSH分客户端openssh-client和服务端openssh-server,opens ...

  3. C# 调用百度翻译Api

    这是简单的界面.用的是wpf,winform也可以 具体的操作类 public partial class MainWindow : Window { string url = "" ...

  4. TYVJ 4354 多重背包二进制优化

    直接放代码了 #include <cstdio> #include <cstring> #include <algorithm> using namespace s ...

  5. 第七章 LED将为我们闪烁:控制发光二极管

     第七章 LED将为我们闪烁:控制发光二极管 本章我们将会看到一个完整的linux驱动程序,通过linux驱动程序控制LED的四个小灯,通俗的说就是通过向linux驱动程序来控制LED小灯的开关.用到 ...

  6. PHP MVC

    学习一个框架之前,基本上我们都需要知道什么是mvc,即model-view-control,说白了就是数据控制以及页面的分离实现,mvc就 是这样应运而生的,mvc分为了三个层次,而且三个层次各司其职 ...

  7. #ifndef 的用法

    背景: 头件的中的#ifndef,这是一个很关键的东西.比如你有两个C文件,这两个C文件都include了同一个头文件.而编译时,这两个C文件要一同编译成一个可运行文件,会引起大量的声明冲突,这时候需 ...

  8. Java和C++的虚函数的异同

    参考博客:点我 要点:Java中的普通函数默认为虚函数,因此动态绑定的行为是默认的,而C++必须将方法声明为虚函数(virtual关键字),执行时才会进行动态绑定,详细区别可参考代码以及注释. 代码大 ...

  9. ubuntu 一些命令

    打开终端 ctrl+alt+t 关闭中端 ctrl+shift+q 打开ppt openoffice.org -g xx.ppt &

  10. tomcat7 启动项目报错 java.lang.NoSuchMethodError: javax.servlet.ServletContext.getSessionCookieConfig()

    JDK版本:jdk1.8.0_77 Tomcat 版本:apache-tomcat-7.0.47 异常重现步骤: 1.完成项目部署 2.启动Tomcat 异常头部信息:java.lang.NoSuch ...