[OpenCV] Samples 03: cout_mat
注意Mat作为kmeans的参数的含义。
扩展:高维向量的聚类。
一、像素聚类

#include "opencv2/highgui.hpp"
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream> using namespace cv;
using namespace std; // static void help()
// {
// cout << "\nThis program demonstrates kmeans clustering.\n"
// "It generates an image with random points, then assigns a random number of cluster\n"
// "centers and uses kmeans to move those cluster centers to their representitive location\n"
// "Call\n"
// "./kmeans\n" << endl;
// } int main( int /*argc*/, char** /*argv*/ )
{
const int MAX_CLUSTERS = 5;
Scalar colorTab[] =
{
Scalar(0, 0, 255),
Scalar(0,255,0),
Scalar(255,100,100),
Scalar(255,0,255),
Scalar(0,255,255)
}; Mat img(500, 500, CV_8UC3);
RNG rng(12345); for(;;)
{
//Jeff --> The second parameter is non-inclusive boundary.
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
int i, sampleCount = rng.uniform(2, 1001);
// int i, sampleCount = 10; Mat points(sampleCount, 1, CV_32FC2), labels;
//一般来说,没有必要。sampleCount都远大于ClusterCount。
// clusterCount = MIN(clusterCount, sampleCount);
Mat centers; /* Jeff --> generate random sample from multigaussian distribution 以某一个中心点,二维高斯分布分配点;主要是一个数学技巧。*/
for( k = 0; k < clusterCount; k++ )
{
Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows); Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
k == clusterCount - 1 ? sampleCount :
(k+1)*sampleCount/clusterCount);
rng.fill(pointChunk, RNG::NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
cout << pointChunk << endl;
}
//洗牌
randShuffle(points, 1, &rng); std::cout << points << std::endl; //Jeff --> Mat is vector here, including a list of points.
// labels: index of cluster for each points.
kmeans(points, clusterCount, labels,
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
3, KMEANS_PP_CENTERS, centers); //Jeff --> Draw point (tiny circle) with its color on black background.
img = Scalar::all(0); // Step One: show sample points.
for( i = 0; i < sampleCount; i++ )
{
int clusterIdx = labels.at<int>(i);
Point ipt = points.at<Point2f>(i);
circle( img, ipt, 2, colorTab[clusterIdx], FILLED, LINE_AA );
} // Step Two: show central points.
for( i = 0; i < clusterCount; i++ )
{
std::cout << centers.at<Point2f>(i) << std::endl;
} imshow("clusters", img); char key = (char)waitKey();
if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
break;
} return 0;
}
二、图像的kmeans降维处理
g++ -std=c++11 -pthread -fpermissive main.cpp -o output `pkg-config --cflags --libs opencv` -ldl
From: http://seiya-kumada.blogspot.com/2013/03/k-means-clustering.html【非常好】
#include <opencv2/highgui.hpp>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream> using namespace cv;
using namespace std; void show_result(const cv::Mat& labels, const cv::Mat& centers, int height, int width)
{
std::cout << "===\n";
std::cout << "labels: " << labels.rows << " " << labels.cols << std::endl;
std::cout << "centers: " << centers.rows << " " << centers.cols << std::endl;
assert(labels.type() == CV_32SC1);
assert(centers.type() == CV_32FC1); cv::Mat rgb_image(height, width, CV_8UC3);
cv::MatIterator_<cv::Vec3b> rgb_first = rgb_image.begin<cv::Vec3b>();
cv::MatIterator_<cv::Vec3b> rgb_last = rgb_image.end<cv::Vec3b>();
cv::MatConstIterator_<int> label_first = labels.begin<int>(); cv::Mat centers_u8;
centers.convertTo(centers_u8, CV_8UC1, 255.0);
cv::Mat centers_u8c3 = centers_u8.reshape(); while ( rgb_first != rgb_last ) {
const cv::Vec3b& rgb = centers_u8c3.ptr<cv::Vec3b>(*label_first)[];
*rgb_first = rgb;
++rgb_first;
++label_first;
}
cv::imshow("tmp", rgb_image);
cv::imwrite("./result.jpg", rgb_image);
cv::waitKey();
} int main(int argc, const char * argv[])
{
cv::Mat image = cv::imread("./d1.jpg");
if ( image.empty() ) {
std::cout << "unable to load an input image\n";
return ;
} std::cout << "image: " << image.rows << ", " << image.cols << std::endl;
assert(image.type() == CV_8UC3);
cv::imshow("image", image); cv::Mat reshaped_image = image.reshape(, image.cols * image.rows);
std::cout << "reshaped image: " << reshaped_image.rows << ", " << reshaped_image.cols << std::endl;
assert(reshaped_image.type() == CV_8UC1);
//check0(image, reshaped_image); cv::Mat reshaped_image32f;
reshaped_image.convertTo(reshaped_image32f, CV_32FC1, 1.0 / 255.0);
std::cout << "reshaped image 32f: " << reshaped_image32f.rows << ", " << reshaped_image32f.cols << std::endl;
assert(reshaped_image32f.type() == CV_32FC1); cv::Mat labels;
int cluster_number = ;
cv::TermCriteria criteria {cv::TermCriteria::COUNT, , };
cv::Mat centers;
cv::kmeans(reshaped_image32f, cluster_number, labels, criteria, , cv::KMEANS_RANDOM_CENTERS, centers); show_result(labels, centers, image.rows, image.cols); return ;
}
三、ROI的kmeans支持
原文:https://blog.csdn.net/fengbingchun/article/details/79395298
double kmeans( InputArray data, int K, InputOutputArray bestLabels,
TermCriteria criteria,
int attempts, int flags, OutputArray centers = noArray() );
接口的声明在include/opencv2/core.hpp文件中,实现在modules/core/src/kmeans.cpp文件中
(1)、data:为cv::Mat类型,每行代表一个样本,即特征,即mat.cols=特征长度,mat.rows=样本数,数据类型仅支持float;
(2)、K:指定聚类时划分为几类;
(3)、bestLabels:为cv::Mat类型,是一个长度为(样本数,1)的矩阵,即mat.cols=1,mat.rows=样本数;为K-Means算法的结果输出,指定每一个样本聚类到哪一个label中;
(4)、criteria:TermCriteria类,算法进行迭代时终止的条件,可以指定最大迭代次数,也可以指定预期的精度,也可以这两种同时指定;
(5)、attempts:指定K-Means算法执行的次数,每次算法执行的结果是不一样的,选择最好的那次结果输出;
(6)、flags:初始化均值点的方法,目前支持三种:KMEANS_RANDOM_CENTERS、KMEANS_PP_CENTERS、KMEANS_USE_INITIAL_LABELS;
(7)、centers:为cv::Mat类型,输出最终的均值点,mat.cols=特征长度,mat.rols=K.
// Color dimension reduction
Mat processTagByKmean(Mat3b const tag, Option option)
{
int K = option.knnClusterNum; // 0. Prepare arguments for kmeans.
cv::Mat reshaped_tag = tag.reshape(, tag.cols * tag.rows); cv::Mat reshaped_tag32f, labels, centers;
reshaped_tag.convertTo(reshaped_tag32f, CV_32FC1, 1.0 / 255.0);
// ------------------------------------------------------------------
// 1. do kmeans
cv::kmeans(reshaped_tag32f, K, labels,
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, , 1.0),
, KMEANS_PP_CENTERS, centers);
// ------------------------------------------------------------------
// 2. convert to rgb mat
cv::Mat rgb_tag(tag.rows, tag.cols, CV_8UC3);
cv::MatIterator_<cv::Vec3b> rgb_first = rgb_tag.begin<cv::Vec3b>();
cv::MatIterator_<cv::Vec3b> rgb_last = rgb_tag.end<cv::Vec3b>();
cv::MatConstIterator_<int> label_first = labels.begin<int>(); cv::Mat centers_u8;
centers.convertTo(centers_u8, CV_8UC1, 255.0);
cv::Mat centers_u8c3 = centers_u8.reshape(); while (rgb_first != rgb_last)
{
const cv::Vec3b &rgb = centers_u8c3.ptr<cv::Vec3b>(*label_first)[];
*rgb_first = rgb;
++rgb_first;
++label_first;
} return rgb_tag;
}
原文:https://blog.csdn.net/qq_22764813/article/details/52135686
如果Mat类型数据的深度和通道数不满足上面的要求,则需要使用convertTo()函数和cvtColor()函数来进行转换。
convertTo()函数负责转换数据类型不同的Mat,即可以将类似float型的Mat转换到imwrite()函数能够接受的类型。
而cvtColor()函数是负责转换不同通道的Mat,因为该函数的第4个参数就可以设置目的Mat数据的通道数(只是我们一般没有用到它,一般情况下这个函数是用来进行色彩空间转换的)。
另外也可以不用imwrite()函数来存图片数据,可以直接用通用的XML IO接口函数将数据存在XML或者YXML中。
[OpenCV] Samples 03: cout_mat的更多相关文章
- [OpenCV] Samples 03: kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. 一.像素聚类 #include "opencv2/highgui.hpp" #include "open ...
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- [OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义. #include <iostream> #include <stdio.h> #include &quo ...
- [OpenCV] Samples 06: [ML] logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 06: logistic regression
logistic regression,这个算法只能解决简单的线性二分类,在众多的机器学习分类算法中并不出众,但它能被改进为多分类,并换了另外一个名字softmax, 这可是深度学习中响当当的分类算法 ...
- [OpenCV] Samples 13: opencv_version
cv::CommandLineParser的使用. I suppose CommandLineParser::has("something") should be true whe ...
- [OpenCV] Samples 12: laplace
先模糊再laplace,也可以替换为sobel等. 变换效果后录成视频,挺好玩. #include "opencv2/videoio/videoio.hpp" #include & ...
- [OpenCV] Samples 05: convexhull
得到了复杂轮廓往往不适合特征的检测,这里再介绍一个点集凸包络的提取函数convexHull,输入参数就可以是contours组中的一个轮廓,返回外凸包络的点集 ---- 如此就能去掉凹进去的边. 对于 ...
- [OpenCV] Samples 02: [ML] kmeans
注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. #include "opencv2/highgui.hpp" #include "opencv2/cor ...
随机推荐
- 转:如何调试PHP的Core之获取基本信息
其实一直想写这个系列, 但是一想到这个话题的宽泛性, 我就有点感觉无法组织. 今天我也不打算全部讲如何调试一个PHP的Core文件, 也不会介绍什么是Coredump, 选择一个相对比较简单的方向来介 ...
- day10---异步I/O,gevent协程
协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来 ...
- PDF2
itex生成PDF文档示例 package dao.other; import java.awt.Color; import java.io.File; import java.io.FileInpu ...
- Manifesto of the Communist Party
A spectre is haunting Europe – the spectre of communism. All the powers of old Europe have entered i ...
- java上传图片或者文件
package com.pat.postrequestemulator; import java.io.BufferedReader; import java.io.DataInputStream; ...
- Java多线程6:synchronized锁定类方法、volatile关键字及其他
同步静态方法 synchronized还可以应用在静态方法上,如果这么写,则代表的是对当前.java文件对应的Class类加锁.看一下例子,注意一下printC()并不是一个静态方法: public ...
- 【T-SQL基础】02.联接查询
概述: 本系列[T-SQL基础]主要是针对T-SQL基础的总结. [T-SQL基础]01.单表查询-几道sql查询题 [T-SQL基础]02.联接查询 [T-SQL基础]03.子查询 [T-SQL基础 ...
- 动态绑定HTML
在Web前端开发中,我们经常会遇见需要动态的将一些来自后端或者是动态拼接的HTML字符串绑定到页面DOM显示,特别是在内容管理系统(CMS:是Content Management System的缩写) ...
- Python--过滤Mysql慢日志
##================================================================## 先来个笑话: 刚交的女朋友让我去他家玩,我觉得空手不好,于是告 ...
- jQuery实现返回顶部
由于项目需要,写了个返回顶部的小功能... /*返回顶部*/ function toTop() { $(".to_top").hide(); $(window).scroll(fu ...