In my stochastic processes class, Prof Mike Steele assigned a homework problem to calculate the ruin probabilities for playing a game where you with 1 dollar with probability p and lose 1 dollar with probability 1-p. The probability of winning is not specified, so it can be a biased game. Ruin probabilities are defined to be the probability that in a game you win 10 before losing 10, win 25 before losing 25, and win 50 before losing 50, etc. In total, I found three distinct methods to calculate.

This is a particularly great example to illustrate how to solve a problem using three fundamentally different methods: the first is theoretical calculation, second is simulation to obtain asymptotic values, and third is numerical linear algebra (matrix algorithm) which also gives exact values.


Method 1: First Step Analysis and Direct Computation of Ruin Probabilities

Let h(x) be the probability of winning $n before losing stake of x dollars.

First step analysis gives us a system of three equations: h(0) = 0; h(n) = 1; h(x) = p*h(x+1) + (1-p)*h(x-1).

How to solve this system of equations? We need the "one" trick and the telescoping sequence.

The trick is: (p + (1-p)) * h(x) = h(x) = p*h(x+1) + (1-p)*h(x-1) => p*(h(x+1) - h(x)) = (1-p)*(h(x) - h(x-1)) => h(x+1) - h(x) = (1-p)/p * (h(x)-h(x-1))

Denote h(1) - h(0) = c, which is unknown yet, we have a telescoping sequence: h(1) - h(0) = c; h(2) - h(1) = (1-p)/p * c; h(3) - h(2) = ((1-p)/p)^2 * c ... h(n) - h(n-1) = ((1-p)/p)^(n-1) * c.

Now, add up the telescoping sequence and use the initial conditions, we get: 1 = h(n) = c*(1+ ((1-p)/p) + ((1-p)/p)^2 + ... + ((1-p)/p)^(n-1)) => c = (1 - (1-p)/p) / (1 - ((1-p)/p)^N-1). So h(x) = c * (((1-p)/p) ^ x - 1) / ((1-p)/p)-1) = (((1-p)/p) ^ x - 1) / (((1-p)/p)^N - 1)


Method 2: Monte Carlo Simulation of Ruin Probabilities

The idea is to simulate sample paths from initial stake of x dollars and stop when it either hits 0 or targeted wealth of n.

We can specify the number of trials and get the percentage of trials which eventually hit 0 and which eventuallyhit n. This is important - in fact, I think the essence of Monte Carlo method is to have a huge number of trials to maintain accuracy, and to get a percentage of the number of successful trials in the total number of trials.

In each step of a trial, we need a Bernoulli random variable (as in a coin flip) to increment x by 1 with probability p and -1 with probability 1-p.

In Python this becomes:

from numpy import random
import numpy as np def MC(x,a,p):
  end_wealth = a
  init_wealth = x
  list = []
  for k in range(0, 1000000):
    while x!= end_wealth and x!= 0:
      if np.random.binomial(1,p,1) == 1:
        x += 1
      else:
        x -= 1
    if x == a:
      list.append(1)
    else:
      list.append(0)
  x = init_wealth
  print float(sum(list))/len(list) MC(10,20,0.4932)
MC(25,50,0.4932)
MC(50,100,0.4932)

You can see the result of this simulation by plugging in p = 0.4932 = (18/37)*.5 + .5*.5 = 0.4932, which is the probability of winning the European Roulette with prisoner's rule. As the number of trials get bigger and bigger, the result gets closer and closer to the theoretical value calculated under Method 1.


Method 3: Tridiagonal System

According to wiki, a tridiagonal system has the form of a_i * x_i-1 + b_i * x_i + c_i * x_i+1 = d_i where i's are indices.

It is clear that the ruin problem exactly satisfies this form, i.e.  h(x) := probability of winning n starting from i, h(x) = (1-p)*h(x-1) + p*h(x+1) => -(1-p)*h(x-1) + h(x) -p*h(x+1) = 0, h(0) = 0, h(n) = 1.

And therefore, for the tridiagonal matrix, the main diagonal consists of 1's, and the upper diagonal consists of -(1-p)'s, and the lower diagonal consists of -p's.

In Python this becomes:

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve n = 100
p = 0.4932
q = 1-p d_main = np.ones(n+1)
d_super = -p * d_main
d_super[1] = 0
d_sub = -q * d_main
d_sub[n-1] = 0 data = [d_sub, d_main, d_super]
print data
A = sparse.spdiags(data, [-1,0,1], n+1, n+1, format='csc') b = np.zeros(n+1)
b[n] = 1
x = spsolve(A, b)
print x

Gambler's Ruin Problem and 3 Solutions的更多相关文章

  1. [Introduction to programming in Java 笔记] 1.3.8 Gambler's ruin simulation 赌徒破产模拟

    赌徒赢得机会有多大? public class Gambler { public static void main(String[] args) { // Run T experiments that ...

  2. 比特币_Bitcoin 简介

    2008-11   Satoshi Nakamoto  Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...

  3. Bitcoin: A Peer-to-Peer Electronic Cash System

    Bitcoin: A Peer-to-Peer Electronic Cash System Satoshi Nakamoto October 31, 2008 Abstract A purely p ...

  4. Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)

    I Proofs1 What is a Proof?2 The Well Ordering Principle3 Logical Formulas4 Mathematical Data Types5 ...

  5. [0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程

    忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象 ...

  6. URAL 1430 Crime and Punishment

    Crime and Punishment Time Limit:500MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  7. Attention and Augmented Recurrent Neural Networks

    Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...

  8. Win7 服务优化个人单机版

    我的PC设备比较旧了,为了系统能流畅点,不必要的服务就不开启了.然而,服务那么多,每次重装,都要从头了解一下一边,浪费时间. 个人在网络上收集信息并结合自己的摸索,整理如下,以备查找. 服务名称  显 ...

  9. [转]WIN7服务一些优化方法

    本文转自:http://bbs.cfanclub.net/thread-391985-1-1.html Win7的服务,手动的一般不用管他,有些自动启动的,但对于有些用户来说是完全没用的,可以考虑禁用 ...

随机推荐

  1. 用于模式匹配的String方法

    String支持四种使用正则表达式的方法. 1.search()返回第一个与之匹配的子串的起始位置,找不到返回-1.search()参数是一个正则表达式,如果参数不是正则表达式,则会先通过RegExp ...

  2. gcc 使用 stdio.h

    9876543210z@z:~/funnyC++$ cat main.cpp #include <stdio.h> int main() { ; ) { printf("%d&q ...

  3. nginx配置文件httpd.conf详解

     PS:Nginx使用有两三年了,现在经常碰到有新用户问一些很基本的问题,我也没时间一一回答,今天下午花了点时间,结合自己的使用经验,把Nginx的主要配置参数说明分享一下,也参考了一些网络的内容,这 ...

  4. 批量执行SQL语句,进行删除,插入或者更改。

    private bool ExecuteTransaction(List<string> list) { using (SqlConnection connection = new Sql ...

  5. Git学习(三)——暂存区、远程仓库、增删改管理

    一.工作区和暂存区 工作区(Working Directory) 就是在你的电脑里能看到的目录 版本库(Repository) 工作区中的一个隐藏目录.git,这个不算工作区,而是Git版本库.Git ...

  6. [转]VS2013自带SQL Server 的启用方法

    本文转自:http://www.icharm.me/vs2013%E8%87%AA%E5%B8%A6%E7%9A%84%E6%95%B0%E6%8D%AE%E5%BA%93sql-server-exp ...

  7. MBProgressHud添加自定义动画

    在使用自定义view时,若直接使用,如下 MBProgressHUD *hud = [MBProgressHUD showHUDAddedTo:self.view animated:YES]; hud ...

  8. mysql常见命令

    1.进入mysql:mysql -u root -p 2.允许远程访问: mysql -u root –p mysql>use mysql; mysql>update user set h ...

  9. Java内存与垃圾收集知识总结

    总结一下关于Java内存的知识,今天我不生产知识,我只是知识的搬运工. 1.运行时数据区域 java虚拟机在执行JAVA程序的过程中会把它所管理的内存划分为若干个不同的数据区域. 由所有线程共享的数据 ...

  10. Android框架之AndroidAnnotations实战

    方案一: 下载 androidannotations-bundle-3.3.2.zip 方案二:   楼主选用开发环境:android studio 新建项目  修改app 下的build.gradl ...