Gambler's Ruin Problem and 3 Solutions
In my stochastic processes class, Prof Mike Steele assigned a homework problem to calculate the ruin probabilities for playing a game where you with 1 dollar with probability p and lose 1 dollar with probability 1-p. The probability of winning is not specified, so it can be a biased game. Ruin probabilities are defined to be the probability that in a game you win 10 before losing 10, win 25 before losing 25, and win 50 before losing 50, etc. In total, I found three distinct methods to calculate.
This is a particularly great example to illustrate how to solve a problem using three fundamentally different methods: the first is theoretical calculation, second is simulation to obtain asymptotic values, and third is numerical linear algebra (matrix algorithm) which also gives exact values.
Method 1: First Step Analysis and Direct Computation of Ruin Probabilities
Let h(x) be the probability of winning $n before losing stake of x dollars.
First step analysis gives us a system of three equations: h(0) = 0; h(n) = 1; h(x) = p*h(x+1) + (1-p)*h(x-1).
How to solve this system of equations? We need the "one" trick and the telescoping sequence.
The trick is: (p + (1-p)) * h(x) = h(x) = p*h(x+1) + (1-p)*h(x-1) => p*(h(x+1) - h(x)) = (1-p)*(h(x) - h(x-1)) => h(x+1) - h(x) = (1-p)/p * (h(x)-h(x-1))
Denote h(1) - h(0) = c, which is unknown yet, we have a telescoping sequence: h(1) - h(0) = c; h(2) - h(1) = (1-p)/p * c; h(3) - h(2) = ((1-p)/p)^2 * c ... h(n) - h(n-1) = ((1-p)/p)^(n-1) * c.
Now, add up the telescoping sequence and use the initial conditions, we get: 1 = h(n) = c*(1+ ((1-p)/p) + ((1-p)/p)^2 + ... + ((1-p)/p)^(n-1)) => c = (1 - (1-p)/p) / (1 - ((1-p)/p)^N-1). So h(x) = c * (((1-p)/p) ^ x - 1) / ((1-p)/p)-1) = (((1-p)/p) ^ x - 1) / (((1-p)/p)^N - 1)
Method 2: Monte Carlo Simulation of Ruin Probabilities
The idea is to simulate sample paths from initial stake of x dollars and stop when it either hits 0 or targeted wealth of n.
We can specify the number of trials and get the percentage of trials which eventually hit 0 and which eventuallyhit n. This is important - in fact, I think the essence of Monte Carlo method is to have a huge number of trials to maintain accuracy, and to get a percentage of the number of successful trials in the total number of trials.
In each step of a trial, we need a Bernoulli random variable (as in a coin flip) to increment x by 1 with probability p and -1 with probability 1-p.
In Python this becomes:
from numpy import random
import numpy as np def MC(x,a,p):
end_wealth = a
init_wealth = x
list = []
for k in range(0, 1000000):
while x!= end_wealth and x!= 0:
if np.random.binomial(1,p,1) == 1:
x += 1
else:
x -= 1
if x == a:
list.append(1)
else:
list.append(0)
x = init_wealth
print float(sum(list))/len(list) MC(10,20,0.4932)
MC(25,50,0.4932)
MC(50,100,0.4932)
You can see the result of this simulation by plugging in p = 0.4932 = (18/37)*.5 + .5*.5 = 0.4932, which is the probability of winning the European Roulette with prisoner's rule. As the number of trials get bigger and bigger, the result gets closer and closer to the theoretical value calculated under Method 1.
Method 3: Tridiagonal System
According to wiki, a tridiagonal system has the form of a_i * x_i-1 + b_i * x_i + c_i * x_i+1 = d_i where i's are indices.
It is clear that the ruin problem exactly satisfies this form, i.e. h(x) := probability of winning n starting from i, h(x) = (1-p)*h(x-1) + p*h(x+1) => -(1-p)*h(x-1) + h(x) -p*h(x+1) = 0, h(0) = 0, h(n) = 1.
And therefore, for the tridiagonal matrix, the main diagonal consists of 1's, and the upper diagonal consists of -(1-p)'s, and the lower diagonal consists of -p's.
In Python this becomes:
import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve n = 100
p = 0.4932
q = 1-p d_main = np.ones(n+1)
d_super = -p * d_main
d_super[1] = 0
d_sub = -q * d_main
d_sub[n-1] = 0 data = [d_sub, d_main, d_super]
print data
A = sparse.spdiags(data, [-1,0,1], n+1, n+1, format='csc') b = np.zeros(n+1)
b[n] = 1
x = spsolve(A, b)
print x
Gambler's Ruin Problem and 3 Solutions的更多相关文章
- [Introduction to programming in Java 笔记] 1.3.8 Gambler's ruin simulation 赌徒破产模拟
赌徒赢得机会有多大? public class Gambler { public static void main(String[] args) { // Run T experiments that ...
- 比特币_Bitcoin 简介
2008-11 Satoshi Nakamoto Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...
- Bitcoin: A Peer-to-Peer Electronic Cash System
Bitcoin: A Peer-to-Peer Electronic Cash System Satoshi Nakamoto October 31, 2008 Abstract A purely p ...
- Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)
I Proofs1 What is a Proof?2 The Well Ordering Principle3 Logical Formulas4 Mathematical Data Types5 ...
- [0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程
忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象 ...
- URAL 1430 Crime and Punishment
Crime and Punishment Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- Attention and Augmented Recurrent Neural Networks
Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...
- Win7 服务优化个人单机版
我的PC设备比较旧了,为了系统能流畅点,不必要的服务就不开启了.然而,服务那么多,每次重装,都要从头了解一下一边,浪费时间. 个人在网络上收集信息并结合自己的摸索,整理如下,以备查找. 服务名称 显 ...
- [转]WIN7服务一些优化方法
本文转自:http://bbs.cfanclub.net/thread-391985-1-1.html Win7的服务,手动的一般不用管他,有些自动启动的,但对于有些用户来说是完全没用的,可以考虑禁用 ...
随机推荐
- javascript 中的继承实现, call,apply,prototype,构造函数
javascript中继承可以通过call.apply.protoperty实现 1.call call的含义: foo.call(thisObject, args...) 表示函数foo调用的时候, ...
- socket网络通信
1.socket通常也称作"套接字",用于描述IP地址和端口.在internet上的主机一般运行了多个服务软件,同时提供几种服务,每种服务都打开一个socket,并绑定到一个端口上 ...
- Data import/export of Netezza using external table
Introduction External table is a special table in Netezza system, which could be used to import/exp ...
- cell当中的按钮如何获得cell内容
cell当中的btn添加方法 [cell.btn addTarget:self action:@selector(btnClickedwith:) forControlEvents:UIControl ...
- 关于 cellForRor中给cell setSelected的时机问题?
我在 cell 里边 - (void)setSelected:(BOOL)selected animated:(BOOL)animated { [super setSelected:selecte ...
- deep learning on object detection
回归工作一周,忙的头晕,看了两三篇文章,主要在写各种文档和走各种办事流程了-- 这次来写写object detection最近看的三篇文章吧.都不是最近的文章,但是是今年的文章,我也想借此让自己赶快熟 ...
- IIS上虚拟目录下站点的web.config与根站点的web.config冲突解决方法
IIS7.5上在站点下部署虚拟目录,访问虚拟目录下的项目提示与父节点配置冲突.,节点与的<system.web>节点与主站点的<system.web>冲突解决方法: 在站点下的 ...
- [转]java.lang.OutOfMemoryError:GC overhead limit exceeded
我遇到这样的问题,本地部署时抛出异常java.lang.OutOfMemoryError:GC overhead limit exceeded导致服务起不来,查看日志发现加载了太多资源到内存,本地的性 ...
- Python 3.5 连接Mysql数据库(pymysql 方式)
由于 MySQLdb 模块还不支持 Python3.x,官方的Mysql连接包只支持到3.4,所以 Python3.5 如果想连接MySQL需要安装 pymysql 模块. pymysql 模块可以通 ...
- RHEL7学习之NTP配置
一,安装NTP [root@localhost ~]# yum install ntp Loaded plugins: product-id, subscription-manager This sy ...