In my stochastic processes class, Prof Mike Steele assigned a homework problem to calculate the ruin probabilities for playing a game where you with 1 dollar with probability p and lose 1 dollar with probability 1-p. The probability of winning is not specified, so it can be a biased game. Ruin probabilities are defined to be the probability that in a game you win 10 before losing 10, win 25 before losing 25, and win 50 before losing 50, etc. In total, I found three distinct methods to calculate.

This is a particularly great example to illustrate how to solve a problem using three fundamentally different methods: the first is theoretical calculation, second is simulation to obtain asymptotic values, and third is numerical linear algebra (matrix algorithm) which also gives exact values.


Method 1: First Step Analysis and Direct Computation of Ruin Probabilities

Let h(x) be the probability of winning $n before losing stake of x dollars.

First step analysis gives us a system of three equations: h(0) = 0; h(n) = 1; h(x) = p*h(x+1) + (1-p)*h(x-1).

How to solve this system of equations? We need the "one" trick and the telescoping sequence.

The trick is: (p + (1-p)) * h(x) = h(x) = p*h(x+1) + (1-p)*h(x-1) => p*(h(x+1) - h(x)) = (1-p)*(h(x) - h(x-1)) => h(x+1) - h(x) = (1-p)/p * (h(x)-h(x-1))

Denote h(1) - h(0) = c, which is unknown yet, we have a telescoping sequence: h(1) - h(0) = c; h(2) - h(1) = (1-p)/p * c; h(3) - h(2) = ((1-p)/p)^2 * c ... h(n) - h(n-1) = ((1-p)/p)^(n-1) * c.

Now, add up the telescoping sequence and use the initial conditions, we get: 1 = h(n) = c*(1+ ((1-p)/p) + ((1-p)/p)^2 + ... + ((1-p)/p)^(n-1)) => c = (1 - (1-p)/p) / (1 - ((1-p)/p)^N-1). So h(x) = c * (((1-p)/p) ^ x - 1) / ((1-p)/p)-1) = (((1-p)/p) ^ x - 1) / (((1-p)/p)^N - 1)


Method 2: Monte Carlo Simulation of Ruin Probabilities

The idea is to simulate sample paths from initial stake of x dollars and stop when it either hits 0 or targeted wealth of n.

We can specify the number of trials and get the percentage of trials which eventually hit 0 and which eventuallyhit n. This is important - in fact, I think the essence of Monte Carlo method is to have a huge number of trials to maintain accuracy, and to get a percentage of the number of successful trials in the total number of trials.

In each step of a trial, we need a Bernoulli random variable (as in a coin flip) to increment x by 1 with probability p and -1 with probability 1-p.

In Python this becomes:

from numpy import random
import numpy as np def MC(x,a,p):
  end_wealth = a
  init_wealth = x
  list = []
  for k in range(0, 1000000):
    while x!= end_wealth and x!= 0:
      if np.random.binomial(1,p,1) == 1:
        x += 1
      else:
        x -= 1
    if x == a:
      list.append(1)
    else:
      list.append(0)
  x = init_wealth
  print float(sum(list))/len(list) MC(10,20,0.4932)
MC(25,50,0.4932)
MC(50,100,0.4932)

You can see the result of this simulation by plugging in p = 0.4932 = (18/37)*.5 + .5*.5 = 0.4932, which is the probability of winning the European Roulette with prisoner's rule. As the number of trials get bigger and bigger, the result gets closer and closer to the theoretical value calculated under Method 1.


Method 3: Tridiagonal System

According to wiki, a tridiagonal system has the form of a_i * x_i-1 + b_i * x_i + c_i * x_i+1 = d_i where i's are indices.

It is clear that the ruin problem exactly satisfies this form, i.e.  h(x) := probability of winning n starting from i, h(x) = (1-p)*h(x-1) + p*h(x+1) => -(1-p)*h(x-1) + h(x) -p*h(x+1) = 0, h(0) = 0, h(n) = 1.

And therefore, for the tridiagonal matrix, the main diagonal consists of 1's, and the upper diagonal consists of -(1-p)'s, and the lower diagonal consists of -p's.

In Python this becomes:

import numpy as np
from scipy import sparse
from scipy.sparse.linalg import spsolve n = 100
p = 0.4932
q = 1-p d_main = np.ones(n+1)
d_super = -p * d_main
d_super[1] = 0
d_sub = -q * d_main
d_sub[n-1] = 0 data = [d_sub, d_main, d_super]
print data
A = sparse.spdiags(data, [-1,0,1], n+1, n+1, format='csc') b = np.zeros(n+1)
b[n] = 1
x = spsolve(A, b)
print x

Gambler's Ruin Problem and 3 Solutions的更多相关文章

  1. [Introduction to programming in Java 笔记] 1.3.8 Gambler's ruin simulation 赌徒破产模拟

    赌徒赢得机会有多大? public class Gambler { public static void main(String[] args) { // Run T experiments that ...

  2. 比特币_Bitcoin 简介

    2008-11   Satoshi Nakamoto  Bitcoin: A Peer-to-Peer Electronic Cash System http://p2pbucks.com/?p=99 ...

  3. Bitcoin: A Peer-to-Peer Electronic Cash System

    Bitcoin: A Peer-to-Peer Electronic Cash System Satoshi Nakamoto October 31, 2008 Abstract A purely p ...

  4. Mathematics for Computer Science (Eric Lehman / F Thomson Leighton / Albert R Meyer 著)

    I Proofs1 What is a Proof?2 The Well Ordering Principle3 Logical Formulas4 Mathematical Data Types5 ...

  5. [0x01 用Python讲解数据结构与算法] 关于数据结构和算法还有编程

    忍耐和坚持虽是痛苦的事情,但却能渐渐地为你带来好处. ——奥维德 一.学习目标 · 回顾在计算机科学.编程和问题解决过程中的基本知识: · 理解“抽象”在问题解决过程中的重要作用: · 理解并实现抽象 ...

  6. URAL 1430 Crime and Punishment

    Crime and Punishment Time Limit:500MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u ...

  7. Attention and Augmented Recurrent Neural Networks

    Attention and Augmented Recurrent Neural Networks CHRIS OLAHGoogle Brain SHAN CARTERGoogle Brain Sep ...

  8. Win7 服务优化个人单机版

    我的PC设备比较旧了,为了系统能流畅点,不必要的服务就不开启了.然而,服务那么多,每次重装,都要从头了解一下一边,浪费时间. 个人在网络上收集信息并结合自己的摸索,整理如下,以备查找. 服务名称  显 ...

  9. [转]WIN7服务一些优化方法

    本文转自:http://bbs.cfanclub.net/thread-391985-1-1.html Win7的服务,手动的一般不用管他,有些自动启动的,但对于有些用户来说是完全没用的,可以考虑禁用 ...

随机推荐

  1. perl中常见的语法规则和函数

    数值比较操作符         字符串 相等          ==                        eq 不等          !=                         ...

  2. 336-Palindrome Pairs

    336-Palindrome Pairs Given a list of unique words, find all pairs of distinct indices (i, j) in the ...

  3. iOS的架构

    根据多年的iOS开发经验,常用的iOS开发架构有:MVC.MVVM.CDD等,在这里我就不一一列举了. 做一个项目一般首先要搭建主流框架界面:常见的有TabBar控制器可以切换子控制器,上面又有Nav ...

  4. 基于Web2.0的RIA框架设计与实现

    http://www.doc88.com/p-8866851533856.html http://cdmd.cnki.com.cn/Article/CDMD-10614-1012472890.htm

  5. 未能正确加载“RoslynPackage”包

    一打开新建程序或者打开项目就报错,原因是安装的组件或者模板丢失或者有问题,在这一过程加载组件必定会产生错误,以下为解决方法: 1.重命名以下文件夹C:\Users\moonlight\Local Se ...

  6. spring 整合hibernate

    1. Spring 整合 Hibernate 整合什么 ? 1). 有 IOC 容器来管理 Hibernate 的 SessionFactory2). 让 Hibernate 使用上 Spring 的 ...

  7. CURL详解(转载)

    curl_setop()函数中的参数中文说明 curl_setop()函数中的参数中文说明 curl_setopt()函数将为一个CURL会话设置选项.option参数是你想要的设置,value是这个 ...

  8. div里面的id与for

    <input class="select" type="checkbox" value="1" id="checkboxjc ...

  9. 转:fatal error: SDL/SDL.h: No such file or directory

    Ubuntu的新得立已经包含SDL库,所以通过几个简单的命令就可以安装,比windows还傻瓜! sudo apt-get install libsdl1.2-dev(比较大,10M左右) 附加包: ...

  10. java中的数据类型

    通常情况下,为了方便物品的存储,我们会规定每个盒子可以存放的物品种类,就好比在"放臭袜子的盒子"里我们是不会放"面包"的!同理,变量的存储也讲究"分门 ...