YARN:Yet Another Resource Negotiator, Hadoop集群的资源管理器,可以对运行在Hadoop上的MapReduce V2,Spark,Impala等进行内存和CPU的分配。

MapReduce过程分析

input split(输入分片)阶段:在进行Map之前,会根据输入文件的大小进行输入分片,每个输入分片对应一个Map任务。输入分片本身并不记录输入数据的内容,而是记录一个分片的长度和一个记录数据所在位置的数组。输入分片往往和HDFS的block关系密切,比如,一个block的大小为128M,有三个输入文件,大小分别为3M,129M,254M则输入分片会把3M分为1个输入分片,129M分成两个分片,254M也会分成两个输入分片。如果我们在map之前做文件合并,把小文件合成大文件,就能够减少map的数量,可以优化MapReduce执行效率。

Map阶段:执行Map function。基于数据本地化原则,一般map的执行是在存储数据的DataNode节点上执行的。

Sort操作:sort是MapReduce模型默认的行为,根据Key对序列化的字节做的排序。

Combiner操作:可选。Combiner实际上是DataNode节点(单个Map的数据)本地数据做的Reduce操作。先对Map结果进行局部Reduce,最大的好处是减少了Reduce阶段数据传输的大小。不过也不是所有的应用都适合进行局部Reduce,要根据业务的需要进去操作。

Merge操作:将spill的文件归并到一起。它是怎么做的呢?“aaa”从某个map task读取过来时值是5,从另外一个map 读取时值是8,因为它们有相同的key,所以得merge成group。什么是group。对于“aaa”就是像这样的:{“aaa”, [5, 8, 2, …]},数组中的值就是从不同溢写文件中读取出来的,然后再把这些值加起来。

Shuffle阶段:将Map的输出作为Reduce的输入的过程就是shuffle了。Map结果输出时,会在内存里开启一个环形内存缓冲区,默认大小为100M。并且在配置文件里为这个缓冲区设定了一个阀值,默认是0.80,同时Map还会为输出操作启动一个守护线程,如果缓冲区的内存达到了阀值的80%时候,这个守护线程就会把内容写到磁盘上,这个过程叫spill,另外的20%内存可以继续写入要写进磁盘的数据,写磁盘和写内存是互不干扰的,如果内存区被撑满了,那么map久会阻塞写内存的操作,让写磁盘操作完成后再继续执行写内存,写磁盘之前,还会先后执行Sort和Combiner操作。写入磁盘的操作叫做spill,即内存满了往磁盘上“溢出”一个文件。也就是说在做map输出有几次spill就会产生多少个溢出文件,等map输出全部做完后,map会Merge这些溢出文件。这个过程里还有一个Partitioner,其实Partitioner操作和map阶段的输入分片(Input split)很像,一个Partitioner对象一个reduce作业,如果我们的mapreduce操作只有一个reduce操作,那么Partitioner就只有一个,如果有多个reduce操作,那么Partitioner对应会有多个,Partitioner就是reduce的输入分片,这个可以编程控制,主要是根据实际Key-Value的值,根据实际业务类型或者为了更好的reduce负载均衡要求进行,这是提高reduce效率的一个关键所在。到了reduce阶段就是合并map输出的文件,Partitioner会找到对应的map输出文件,然后进行复制操作(通过HTTP请求,把需要Reduce的数据聚到一起(HTTP传输也是影响performance的主要地方)),复制操作时reduce会开启几个复制线程,这些线程默认个数是5个,程序员也可以在配置文件更改复制线程的个数,这个复制过程和map写入磁盘过程类似,也有阀值和内存大小,阀值一样可以在配置文件里配置。

Reduce阶段:执行reduce function,把结果写到HFDS上。

Spark过程分析

不同于Hadoop MapReduce把数据处理流程分成明显的input split,map,spill,merge,shuffle, sort,reduce等几个阶段,每个阶段各司其职,spark的核心是RDD,在执行阶段分为不同的stage和一系列transformation,action操作。Spark会记录所有的transformation操作,绘制一个DAG图,DAG中的RDDs之间如果是窄依赖,则化为同一个stage,如果是宽依赖,则分成不同的stage。

  • 窄依赖是指父RDD的每个分区只被子RDD的一个分区所使用,子RDD分区通常对应常数个父RDD分区(O(1),与数据规模无关)
  • 相应的,宽依赖是指父RDD的每个分区都可能被多个子RDD分区所使用,子RDD分区通常对应所有的父RDD分区(O(n),与数据规模有关)

Spark运行过程中记录所有的transformation操作(不实际执行),遇到Action操作,把所有之前的transformation操作一把进行执行。在执行的过程中,也可能遇到shuffle的case(比如,reduceByKey操作),spark的shuffle也是将mapper的输出通过Partitioner操作送入Reducer。Reducer以内存做缓冲,变shuffle边做aggerate,等到aggerate完成之后,执行reduce function。

cloudera learning8:MapReduce and Spark的更多相关文章

  1. MapReduce和Spark写入Hbase多表总结

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduc ...

  2. hadoop的mapReduce和Spark的shuffle过程的详解与对比及优化

    https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spar ...

  3. 谈谈Hadoop MapReduce和Spark MR实现

    谈谈MapReduce的概念.Hadoop MapReduce和Spark基于MR的实现 什么是MapReduce? MapReduce是一种分布式海量数据处理的编程模型,用于大规模数据集的并行运算. ...

  4. Yarn、MapReduce、spark、storm的关系

    YARN并不是下一代 MapReduce (MRv2),下一代 MapReduce 与第一代 MapReduce (MRv1)在编程接口.数据处理引擎(MapTask和ReduceTask)是完全一样 ...

  5. 详解MapReduce(Spark和MapReduce对比铺垫篇)

    本来笔者是不打算写MapReduce的,但是考虑到目前很多公司还都在用这个计算引擎,以及后续要讲的Hive原生支持的计算引擎也是MapReduce,并且为Spark和MapReduce的对比做铺垫,笔 ...

  6. spark VS mapreduce

    Apache Spark,一个内存数据处理的框架,现在是一个顶级Apache项目. 这是Spark迈向稳定的重要一步,因为它越来越多地在下一代大数据应用中取代MapReduce. MapReduce是 ...

  7. MapReduce Shuffle原理 与 Spark Shuffle原理

    MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一 ...

  8. 【Hadoop】mapreduce采用多进程与spark采用多线程比较

    转自:Mapreduce多进程与spark多线程 Apache Spark的高性能一定程度上取决于它采用的异步并发模型(这里指server/driver 端采用的模型),这与Hadoop 2.0(包括 ...

  9. Hadoop MapReduce Task的进程模型与Spark Task的线程模型

    Hadoop的MapReduce的Map Task和Reduce Task都是进程级别的:而Spark Task则是基于线程模型的. 多进程模型和多线程模型 所谓的多进程模型和多线程模型,指的是同一个 ...

随机推荐

  1. AJAX里,使用XML返回数据类型,实现简单下拉列表

    XML:可扩展标记语言 HTML:超文本标记语言 标签:<标签名></标签名> 特点: 1.必须要有一个根 2.标签名自定义 3.对大小写敏感 4.有开始就要有结束 5.同一级 ...

  2. Indy FTP 警告:Only one TIdAntiFreeze can be active in an application

    > Should I use a AntiFreeze component on every form I have a TIdTCPClient > component?  Or is ...

  3. 编辑 Ext 表格(二)——— 编辑表格元素

    一.编辑单元格 Ext 中通过配置表格的属性 plugins 来设置表格是否可编辑, 表格的配置具体如下: var gridTable = Ext.create('Ext.grid.Panel', { ...

  4. 说说Spring中的WebDataBinder

    国内私募机构九鼎控股打造APP,来就送 20元现金领取地址:http://jdb.jiudingcapital.com/phone.html内部邀请码:C8E245J (不写邀请码,没有现金送)国内私 ...

  5. hadoop入门(3)——hadoop2.0理论基础:安装部署方法

    一.hadoop2.0安装部署流程         1.自动安装部署:Ambari.Minos(小米).Cloudera Manager(收费)         2.使用RPM包安装部署:Apache ...

  6. ios10新特性-UserNotification

    引言:iOS的通知分本地通知和远程通知,iOS10之前采用的是UILocationNotification类,远程通知有苹果服务器进行转发,本地通知和远程通知其回调的处理都是通过AppDelegate ...

  7. Android 控件的显示隐藏上下左右移动动画

    一.利用Android提供的左右移动工具类:AnimationUtils 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 LinearLayout ll_fi ...

  8. 【转】Java内存管理:深入Java内存区域

    转自:http://www.cnblogs.com/gw811/archive/2012/10/18/2730117.html 本文引用自:深入理解Java虚拟机的第2章内容 Java与C++之间有一 ...

  9. 【Spring RCP】 RULES规则

    Rich Client 约束规则 1.Constraint 定义了一个约束接口,接口中只有1个方法 public boolean test(Object argument); //这个方法指对约束的检 ...

  10. Spring中scope作用域

    scope作用域: 1.prototype 2.request      3.session 4.singleton 5.global session 1.prototype(多例) prototyp ...