Problem Introduction

The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_{i-1}+F_{i-2}\) for $ i \geq 2$.

Problem Description

Task.Given two integers \(n\) and \(m\), output \(F_n \ mod \ m\)(that is, the remainder of \(F_n\) when divided by \(m\)).

Input Format.The input consists of two integers \(n\) and \(m\) given on the same line(separated by a space).

Constraints. \(1 \leq n \leq 10^{18}, 2 \leq m \leq 10^5\).

Output Format.Output \(F_n \ mod \ m\)

Sample 1.
Input:

281621358815590 30524

Output:

11963

Solution

# Uses python3
import sys

def get_fibonaccihuge(n, m):
    x, y = 0, 1
    pisano = []
    while True:
        pisano.append(x)
        x, y = y % m, (x+y) % m
        if x == 0 and y == 1:
            break
    return pisano[n % len(pisano)]

if __name__ == '__main__':
    input = sys.stdin.read()
    n, m = map(int, input.split())
    print(get_fibonaccihuge(n, m))

[UCSD白板题] Huge Fibonacci Number modulo m的更多相关文章

  1. [UCSD白板题 ]Small Fibonacci Number

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  2. [UCSD白板题] The Last Digit of a Large Fibonacci Number

    Problem Introduction The Fibonacci numbers are defined as follows: \(F_0=0\), \(F_1=1\),and \(F_i=F_ ...

  3. [UCSD白板题] Number of Inversions

    Problem Introduction An inversion of a sequence \(a_0,a_1,\cdots,a_{n-1}\) is a pair of indices \(0 ...

  4. 【LeetCode每天一题】Fibonacci Number(斐波那契数列)

    The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such th ...

  5. [UCSD白板题] Compute the Edit Distance Between Two Strings

    Problem Introduction The edit distinct between two strings is the minimum number of insertions, dele ...

  6. [UCSD白板题] Take as Much Gold as Possible

    Problem Introduction This problem is about implementing an algorithm for the knapsack without repeti ...

  7. [UCSD白板题] Primitive Calculator

    Problem Introduction You are given a primitive calculator that can perform the following three opera ...

  8. [UCSD白板题] Points and Segments

    Problem Introduction The goal in this problem is given a set of segments on a line and a set of poin ...

  9. [UCSD白板题] Binary Search

    Problem Introduction In this problem, you will implemented the binary search algorithm that allows s ...

随机推荐

  1. crontab 系列

    crontab是一个很方便的在unix/linux系统上定时(循环)执行某个任务的程序使用cron服务,用 service crond status 查看 cron服务状态,如果没有启动则 servi ...

  2. 试一下SVG

    用鼠标点击那个圆形试试 function changeCircle() { var c = document.getElementById("mycircle"); c.setAt ...

  3. 基于Web2.0的RIA框架设计与实现

    http://www.doc88.com/p-8866851533856.html http://cdmd.cnki.com.cn/Article/CDMD-10614-1012472890.htm

  4. SQL 分页

    sql = "SELECT TOP 10000 * " + " FROM(SELECT ROW_NUMBER() OVER(ORDER BY DataArticleID) ...

  5. 大话JSON之Gson解析JSON

    (三)解析Json数组(多条Json数据) 比如有如下Json数据: [{'name':'John', 'grade':[{'course':'English','score':100},{'cour ...

  6. Entity Framework Code First数据库自动更新

    EF的Code First方式允许你先写Model,再通过Model生成数据库和表. 具体步骤如下: 1.建项目 2.在model文件夹中,添加一个派生自DbContext的类,和一些Model类. ...

  7. Linux centOS下搭建RTMP服务器的具体步骤

    以下的所需的安装包,可直接在linux系统终端下载,也可从其他地方下载之后拷到对应目录下解压使用,遇到连接不到国外网站时可改变压缩包地址 1.安装依赖包: #yum install glibc.i68 ...

  8. gulp LiveReload middleware

    用yo搭建的angular项目,用gulp自动化构建. 自动化构建主要的功能大致有: 1. 文件压缩 2. 文件重命名 3. 文件合并 4. css,js文件自动引入到html 5. 自动刷新 ... ...

  9. python函数动态参数详解

    Python的动态参数: 1,参数前一个"*":在函数中会把传的参数转成一个元组. def func (*args): print(args) func(123,1,2,'a') ...

  10. service XXX does not support chkconfig

    有时候为了方便管理,我们常常喜欢在Linux中将之安装为服务,然后就可以使用服务来管理. 但是当我们运行安装服务的命令时候,假设服务名为myservice #chkconfig --add myser ...