【大数据】Linux下Storm(0.9版本以上)的环境配置和小Demo
一、引言:
在storm发布到0.9.x以后,配置storm将会变得简单很多,也就是只需要配置zookeeper和storm即可,而不再需要配置zeromq和jzmq,由于网上面的storm配置绝大部分都是0.9以前的storm版本,所以有很多工作是不需要进行的,下面就storm的0.9.5版本在linux环境下进行配置进行详细解析。
由于配置storm只需要两个步骤,大大简化了配置,也是storm团队做了很大的努力,让程序员们专注于程序,让storm配置进行异常简单,好了,废话说了不少,下面正式开始讲解。
二、配置zookeeper
1.打开shell,可以根据自身的习惯设置下载文件的位置信息,使用如下命令进行下载(下载3.4.6版本,此版本位稳定版):
wget http://mirrors.hust.edu.cn/apache/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar.gz
2.下载完成后,使用如下命令进行解压缩:
tar -zxvf zookeeper-3.4.6.tar.gz
会出现一个名为zookeeper-3.4.6的文件夹
3.进入zookeeper-3.4.6的conf文件夹,复制zoo_sample.cfg,重命名为zoo.cfg
4.修改zoo.cfg的内容,添加的内容如下:
dataDir=/home/leesf/program/zookeeper/data //(注释:放置数据信息)
dataLogDir=/home/leesf/program/zookeeper/log //(注释:放置日志信息)
server.1=127.0.0.1:2888:3888 //(注释:使用本地模式,如果有多个机器,可以进行配置(server.1=xxx.xxx.xxxx:xxxx:xxxx
//server.2=xxx.xxx.xxx:xxxx:xxxx ....))
5.在shell命令行里进入zookeeper-3.4.6/bin目录,使用如下命令可以开启、测试、停止zookeeper服务
./zkServer.sh start //(注释:开启服务)
./zkServer.sh status //(注释:查看状态)
./zkServer.sh stop //(停止服务)
截图如下:

三、配置storm
1.下载storm,使用如下命令下载storm文件
wget http://mirrors.hust.edu.cn/apache/storm/apache-storm-0.9.5/apache-storm-0.9.5.tar.gz
2.进行解压缩,使用如下命令
tar -zxvf apache-storm-0.9.5.tar.gz
解压缩后出现文件夹apache-storm-0.9.5
3.修改apache-storm-0.9.5/conf目录中的storm.yaml文件
添加的内容如下:
# storm.zookeeper.servers:
# - "127.0.0.1"
#
# nimbus.host: "127.0.0.1"
#
# storm.zookeeper.port:2181
#
# storm.local.dir: "/home/leesf/program/storm/data"
#
# supervisor.slots.ports:
# -6700
# -6701
# -6702
# -6703
4.进入到apache-storm-0.9.5/bin目录下,启动nimbus、supervisor、ui,使用如下命令进行启动:
./storm nimbus
./storm supervisor
./storm ui
截图如下:



5.在浏览器中查看storm ui信息,打开浏览器输入127.0.0.1:8080即可查看
截图如下:

至此,storm的配置就完成了。
下面使用storm的本地模式来运行一个小的Demo,方便各位园友查看storm的运行效果
四、Storm Demo示例
storm demo的目录结构如下
1.spout包,数据发射源
2.bolt包,数据处理节点
3.main包,程序执行入口
4.words.txt,程序资源文件
分为如下几个步骤:
1.添加源代码:
1.spout包中包含一个java文件,WordReader.java,具体代码如下:
package com.leesf.Spout; import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Map;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values; public class WordReader extends BaseRichSpout { private SpoutOutputCollector collector;
private FileReader fileReader;
private boolean completed = false;
public void ack(Object msgId) {
System.out.println("OK:"+msgId);
}
public void close() {}
public void fail(Object msgId) {
System.out.println("FAIL:"+msgId);
} /**
* The only thing that the methods will do It is emit each
* file line
*/
public void nextTuple() {
/**
* The nextuple it is called forever, so if we have been readed the file
* we will wait and then return
*/
if(completed){
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
//Do nothing
}
return;
}
String str;
//Open the reader
BufferedReader reader = new BufferedReader(fileReader);
try{
//Read all lines
while((str = reader.readLine()) != null){
/**
* By each line emmit a new value with the line as a their
*/
this.collector.emit(new Values(str),str);
}
}catch(Exception e){
throw new RuntimeException("Error reading tuple",e);
}finally{
completed = true;
}
} /**
* We will create the file and get the collector object
*/
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
try {
this.fileReader = new FileReader(conf.get("wordsFile").toString());
} catch (FileNotFoundException e) {
throw new RuntimeException("Error reading file ["+conf.get("wordFile")+"]");
}
this.collector = collector;
} /**
* Declare the output field "word"
*/
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("line"));
}
}
2.bolt包中包含两个java文件,WordCounter.java、WordNormalizer.java,具体代码如下:
WordCounter.java代码如下:
package com.leesf.Bolt; import java.util.HashMap;
import java.util.Map; import backtype.storm.task.TopologyContext;
import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Tuple; public class WordCounter extends BaseBasicBolt { Integer id;
String name;
Map<String, Integer> counters; /**
* At the end of the spout (when the cluster is shutdown
* We will show the word counters
*/
@Override
public void cleanup() {
System.out.println("-- Word Counter ["+name+"-"+id+"] --");
for(Map.Entry<String, Integer> entry : counters.entrySet()){
System.out.println(entry.getKey()+": "+entry.getValue());
}
} /**
* On create
*/
@Override
public void prepare(Map stormConf, TopologyContext context) {
this.counters = new HashMap<String, Integer>();
this.name = context.getThisComponentId();
this.id = context.getThisTaskId();
} @Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {} @Override
public void execute(Tuple input, BasicOutputCollector collector) {
String str = input.getString(0);
/**
* If the word dosn't exist in the map we will create
* this, if not We will add 1
*/
if(!counters.containsKey(str)){
counters.put(str, 1);
}else{
Integer c = counters.get(str) + 1;
counters.put(str, c);
}
}
}
WordNormalizer.java代码如下:
package com.leesf.Bolt; import backtype.storm.topology.BasicOutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseBasicBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values; public class WordNormalizer extends BaseBasicBolt { public void cleanup() {} /**
* The bolt will receive the line from the
* words file and process it to Normalize this line
*
* The normalize will be put the words in lower case
* and split the line to get all words in this
*/
public void execute(Tuple input, BasicOutputCollector collector) {
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for(String word : words){
word = word.trim();
if(!word.isEmpty()){
word = word.toLowerCase();
collector.emit(new Values(word));
}
}
} /**
* The bolt will only emit the field "word"
*/
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
}
3.main包中包含一个java文件,Main.java,具体代码如下:
package com.leesf.Main;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.tuple.Fields;
import com.leesf.Bolt.*;
import com.leesf.Spout.*; public class Main {
public static void main(String[] args) throws InterruptedException { //Topology definition
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("word-reader",new WordReader());
builder.setBolt("word-normalizer", new WordNormalizer())
.shuffleGrouping("word-reader");
builder.setBolt("word-counter", new WordCounter(),1)
.fieldsGrouping("word-normalizer", new Fields("word")); //Configuration
Config conf = new Config();
conf.put("wordsFile", "/home/leesf/code/eclipse/StormDemo/res/words.txt");
conf.setDebug(false);
//Topology run
conf.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("Getting-Started-Toplogie", conf, builder.createTopology());
Thread.sleep(10000);
cluster.shutdown();
}
}
4.资源文件,words.txt,内容如下:
storm
test
are
great
is
an
storm
simple
application
but
very
powerfull
really
StOrm
is
great
words.txt可以放在任何地方,相应的程序中的路径也要进行修改,保证路径一致。
2.添加依赖库
将storm/lib目录下的所有文件添加到本项目中,截图如下:

3.运行程序
运行程序,可以得到如下的结果:

至此,关于storm的所有配置就已经完成了,下面可以进行相应的storm的开发了。
总结:storm在发布了0.9b版本以后,其配置工作就变得很简单,不再需要配置zeromq和jzmq,现在网上面的配置信息绝大部分都是0.9版本以前的,所以配置显得很累赘,在此记录此次的配置过程,方便各位园友的同时也方便自己以后再去配置这样的信息。在配置的过程中有任何问题也欢迎交流,谢谢各位观看。
参考链接:
http://blog.csdn.net/w13770269691/article/details/38982397
【大数据】Linux下Storm(0.9版本以上)的环境配置和小Demo的更多相关文章
- 大数据笔记(十七)——Pig的安装及环境配置、数据模型
一.Pig简介和Pig的安装配置 1.最早是由Yahoo开发,后来给了Apache 2.支持语言:PigLatin 类似SQL 3.翻译器 PigLatin ---> MapReduce(Spa ...
- R You Ready?——大数据时代下优雅、卓越的统计分析及绘图环境
作者按:本文根据去年11月份CSDN举办的“大数据技术大会”演讲材料整理,最初发表于2012年2月期<程序员>杂志. 0 R 的安装
- 柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装、配置与监控
柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控 一.安装 1.安装Erlang 1)系统编译环境(这里采用linux/unix 环境) ① 安装环境 虚拟机:VMw ...
- 大数据技术之Hadoop3.1.2版本HA模式
大数据技术之Hadoop3.1.2版本HA模式 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Hadoop的HA特点 1>.主备NameNode 2>.解决单点故障 ...
- 大数据技术之Hadoop3.1.2版本完全分布式部署
大数据技术之Hadoop3.1.2版本完全分布式部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.主机环境准备 1>.操作系统环境 [root@node101.yinz ...
- 大数据技术之Hadoop3.1.2版本伪分布式部署
大数据技术之Hadoop3.1.2版本伪分布式部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.主机环境准备 1>.操作系统环境 [root@node101.yinzh ...
- c#中@标志的作用 C#通过序列化实现深表复制 细说并发编程-TPL 大数据量下DataTable To List效率对比 【转载】C#工具类:实现文件操作File的工具类 异步多线程 Async .net 多线程 Thread ThreadPool Task .Net 反射学习
c#中@标志的作用 参考微软官方文档-特殊字符@,地址 https://docs.microsoft.com/zh-cn/dotnet/csharp/language-reference/toke ...
- 柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)
二.Work Queues(using the Java Client) 走起 在第上一个教程中我们写程序从一个命名队列发送和接收消息.在这一次我们将创建一个工作队列,将用于分发耗时的任务在多个工 ...
- 柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)
柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航) 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重 ...
随机推荐
- Replication的犄角旮旯(六)-- 一个DDL引发的血案(上)(如何近似估算DDL操作进度)
<Replication的犄角旮旯>系列导读 Replication的犄角旮旯(一)--变更订阅端表名的应用场景 Replication的犄角旮旯(二)--寻找订阅端丢失的记录 Repli ...
- JS写的排序算法演示
看到网上有老外写的,就拿起自已之前完成的jmgraph画图组件也写了一个.想了解jmgraph的请移步:https://github.com/jiamao/jmgraph 当前演示请查看:http:/ ...
- .Net平台下,分布式文件存储的实现
遇到的问题 对于Web程序,使用一台服务器的时候,客户端上传的文件一般也都是存储在这台服务器上.但在集群环境中就行不通了,如果每个服务器都存储自己接受到的文件,就乱套了,数据库中明明有这个附件的记录, ...
- ORM查询语言(OQL)简介--高级篇(续):庐山真貌
相关文章内容索引: ORM查询语言(OQL)简介--概念篇 ORM查询语言(OQL)简介--实例篇 ORM查询语言(OQL)简介--高级篇:脱胎换骨 ORM查询语言(OQL)简介--高级篇(续):庐山 ...
- 关于使用ABP框架搭建的项目升级时需要注意的问题汇总
ABP理论学习总目录 一步一步使用ABP框架搭建正式项目系列教程 ABP之Module-Zero学习目录 本篇目录 说明 升级方法 问题_01:Log4Net导致编译不成功 2015/12/18更新 ...
- Unable to locate secure storage module异常的解决方案
org.eclipse.equinox.security.storage.StorageException: Unable to locate secure storage module 该异常同样是 ...
- Entity Framework返回IEnumerable还是IQueryable?
在使用EF的过程中,我们常常使用repository模式,本文就在repository层的返回值是IEnumerable类型还是IQueryable进行探讨. 阅读目录: 一.什么是Repositor ...
- 《C#图解教程》读书笔记之四:类和继承
本篇已收录至<C#图解教程>读书笔记目录贴,点击访问该目录可获取更多内容. 一.万物之宗:Object (1)除了特殊的Object类,其他所有类都是派生类,即使他们没有显示基类定义. ( ...
- Asp.net下使用HttpModule模拟Filter,实现权限控制
在asp.net中,我们为了防止用户直接从Url中访问指定的页面而绕过登录验证,需要给每个页面加上验证,或者是在模板页中加上验证.如果说项目比较大的话,添加验证是一件令人抓狂的事情,本次,我就跟大家分 ...
- Java多线程系列--“JUC锁”05之 非公平锁
概要 前面两章分析了"公平锁的获取和释放机制",这一章开始对“非公平锁”的获取锁/释放锁的过程进行分析.内容包括:参考代码获取非公平锁(基于JDK1.7.0_40)释放非公平锁(基 ...