【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线
题目背景
在长沙城新建的环城公路上一共有8个公交站,分别为A、B、C、D、E、F、G、H。公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另外一个公交站往往要换几次车,例如从公交站A到公交站D,你就至少需要换3次车。
Tiger的方向感极其糟糕,我们知道从公交站A到公交E只需要换4次车就可以到达,可是tiger却总共换了n次车,注意tiger一旦到达公交站E,他不会愚蠢到再去换车。现在希望你计算一下tiger有多少种可能的乘车方案。
题目描述
输入输出格式
输入格式:
输入文件由bus.in读入,输入文件当中仅有一个正整数n(4<=n<=10000000),表示tiger从公交车站A到公交车站E共换了n次车。
输出格式:
输出到文件bus.out。输出文件仅有一个正整数,由于方案数很大,请输出方案数除以 1000后的余数。
输入输出样例
6
8
说明
8条路线分别是:
(A→B→C→D→C→D→E),(A→B→C→B→C→D→E),
(A→B→A→B→C→D→E),(A→H→A→B→C→D→E),
(A→H→G→F→G→F→E),(A→H→G→H→G→F→E),
(A→H→A→H→G→F→E),(A→B→A→H→G→F→E)。
矩阵快速幂。
把这个题看做一个图,存到邻接矩阵里。
设GK[i][j]表示从i走到j有路径长度为k的路径条数。G1就是邻接矩阵
转移:G2k[i][j] = Σ(Gk[i][k] * Gk[k][j])
不难发现Gk = G1^k
至于快速幂,把原来的快速幂直接改过来就可以了
洛谷辣鸡分类!这是第三道分类里说是线段树结果没法用线段树做的题了!
完
#include <bits/stdc++.h>
const int INF = 0x3f3f3f3f;
const int MOD = ;
inline void read(int &x){
x = ;char ch = getchar();char c = ch;
while(ch > '' || ch < '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '',ch = getchar();
if(c == '-')x = -x;
} long long tmp[][];
long long a[][],b[][]; void mul(long long a[][], long long b[][], long long c[][]){
memset(tmp, , sizeof(tmp));
for(int k = ;k <= ;k ++)
{
for(int i = ;i <= ;i ++)
{
for(int j = ;j <= ;j ++)
{
tmp[i][j] = (tmp[i][j] + a[i][k] * b[k][j]) % MOD;
}
}
}
for(int i = ;i <= ;i ++)
{
for(int j = ;j <= ;j ++)
{
c[i][j] = tmp[i][j] % MOD;
}
}
} void pow(int n)
{
for(int i = ;i <= ;i ++)b[i][i] = ;
mul(b, a, b);
while(n)
{
if(n & )mul(a, b, a);
mul(b, b, b);
n >>= ;
}
}
int nn;
int main(){
read(nn);
for(int i = ;i <= ;i ++)a[i][i + ] = a[i + ][i] = ;
a[][] = a[][] = ;
a[][] = a[][] = ;
pow(nn - );
printf("%d", a[][] % MOD);
return ;
}
【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线的更多相关文章
- 洛谷 P2233 [HNOI2002]公交车路线 解题报告
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- 3990 [模板]矩阵快速幂 洛谷luogu
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k ...
- 洛谷 2233 [HNOI2002]公交车路线
题目戳这里 一句话题意 一个大小为8的环,求从1到5正好n步的方案数(途中不能经过5). Solution 巨说这个题目很水 应该是比较容易的DP,直接从把左边和右边的方案数加起来即可,但是有几个需要 ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
- 洛谷 P2233 [HNOI]公交车线路
洛谷 不知道大家做没做过传球游戏,这一题和传球游戏的转移方程几乎一样. 令\(A\)为\(1\)点,\(E\)为\(5\)点,那么\(f[i][j]\)代表第i步走到j的方案数. \[f[i][j]= ...
- P2233 [HNOI2002]公交车路线
洛咕原题 dp->矩阵乘法 首先我们可以得出一个状态转移方程 f[i][j]=f[i-1][j-1]+f[i-1][j+1] 蓝后发现,我们可以把这转化为一个8*8的转移矩阵 然后跑一遍矩阵快速 ...
- 【洛谷 p3390】模板-矩阵快速幂(数论)
题目:给定n*n的矩阵A,求A^k. 解法:利用矩阵乘法的定义和快速幂解答.注意用负数,但是数据太弱没有卡到我......(P.S.不要在 typedef long long LL; 前使用 LL. ...
- 模板【洛谷P3390】 【模板】矩阵快速幂
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i, ...
- 洛谷P1939【模板】矩阵加速(数列)+矩阵快速幂
思路: 这个 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 可以想成: [a(n) ] [1 0 1] [a(n-1) ] [a(n-1) ] = ...
随机推荐
- Spring中的Junit
Spring中的Junit package com.imooc.test.base; import org.junit.After; import org.junit.Before; import o ...
- Windows Server 2008 R2 部署服务
Windows Server 2008 R2 部署服务 部分参考: Windows Server 2008 R2 部署服务 - 马睿的技术博客 - 51CTO技术博客http://marui.blog ...
- 深入浅出 Java Concurrency (25): 并发容器 part 10 双向并发阻塞队列 BlockingDeque[转]
这个小节介绍Queue的最后一个工具,也是最强大的一个工具.从名称上就可以看到此工具的特点:双向并发阻塞队列.所谓双向是指可以从队列的头和尾同时操作,并发只是线程安全的实现,阻塞允许在入队出队不满足条 ...
- VS2010-MFC(利用MFC向导生成单文档应用程序框架)
一.VC++与MFC 讲VC++免不了要提MFC,MFC全称Microsoft Foundation Classes,也就是微软基础类库.它是VC++的核心,是C++与Windows API的结合,很 ...
- 解决MySQL登录ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using passwor)问题
问题描述 今天在MAC上安装完MySQL后,MYSQL默认给分配了一个默认密码,但当自己在终端上使用默认密码登录的时候,总会提示一个授权失败的错误:Access denied for user ‘ro ...
- HBase 面向列的存储
- Vue跳转相同路由不同参数,解决页面数据不自动刷新
参考: https://www.cnblogs.com/ainyi/p/9340311.html https://blog.csdn.net/weixin_41888813/article/detai ...
- [TJOI2017]城市 【树的直径+暴力+优化】
Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...
- Luogu P2845 [USACO15DEC]Switching on the Lights 开关灯(bfs)
P2845 [USACO15DEC]Switching on the Lights 开关灯 题意 题目背景 来源:usaco-2015-dec \(Farm\ John\)最近新建了一批巨大的牛棚.这 ...
- [编织消息框架][JAVA核心技术]数值与逻辑分离
为什么要分离? 业务需求是不停地变,如果把条件写进代码里,当用户需求变时要改代码发版本更新才能生效,这过程无疑是漫长的 就算是在开发期,不停的变开发者精力耗光在沟通,小修改上,无法专注逻辑部分 分离的 ...