A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format left_index right_index, provided that the nodes are numbered from 0 to N−1, and 0 is always the root. If one child is missing, then − will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

Output Specification:

For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

Sample Input:

9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42

Sample Output:

58 25 82 11 38 67 45 73 42
 #include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
using namespace std;
struct Node
{
int val, l, r;
}node[];
vector<int>nums(), levelOrder;
int N, k = ;
void inOrderTravel(int root)//得到树的中序遍历
{
if (root == -)
return;
inOrderTravel(node[root].l);
node[root].val = nums[k++];
inOrderTravel(node[root].r);
}
void levelOrderTravel(int root)//得到树的中序遍历
{
queue<int>q;
q.push(root);
while (!q.empty())
{
root = q.front();
q.pop();
levelOrder.push_back(node[root].val);
if (node[root].l != -)
q.push(node[root].l);
if (node[root].r != -)
q.push(node[root].r);
}
}
int main()
{
cin >> N;
int l, r;
int root = ;
for (int i = ; i < N; ++i)//按题目意思使用前序遍历构建一棵树
{
cin >> l >> r;
node[i].l = l;
node[i].r = r;
}
for (int i = ; i < N; ++i)
cin >> nums[i];
sort(nums.begin(), nums.begin() + N);//得到中序遍历
inOrderTravel(root);//通过中序遍历重构二叉树
levelOrderTravel(root);
for (int i = ; i < N; ++i)
cout << levelOrder[i] << (i == N - ? "" : " ");
return ;
}

PAT甲级——A1099 Build A Binary Search Tree的更多相关文章

  1. PAT甲级——1099 Build A Binary Search Tree (二叉搜索树)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90701125 1099 Build A Binary Searc ...

  2. pat 甲级 1099. Build A Binary Search Tree (30)

    1099. Build A Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN ...

  3. PAT 甲级 1099 Build A Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805367987355648 A Binary Search Tree ( ...

  4. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  5. PAT A1099 Build A Binary Search Tree (30 分)——二叉搜索树,中序遍历,层序遍历

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  6. A1099. Build A Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  7. PAT Advanced 1099 Build A Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  8. 【PAT甲级】1064 Complete Binary Search Tree (30 分)

    题意:输入一个正整数N(<=1000),接着输入N个非负整数(<=2000),输出完全二叉树的层次遍历. AAAAAccepted code: #define HAVE_STRUCT_TI ...

  9. PAT_A1099#Build A Binary Search Tree

    Source: PAT A1099 Build A Binary Search Tree (30 分) Description: A Binary Search Tree (BST) is recur ...

随机推荐

  1. event.target.tagName

    html中 event.target.tagName 中的tagName属性他返回的就是元素标签的大写名称 例如标签他的tagName就是EM 所以用大写 记住:在 HTML 中,tagName 属性 ...

  2. ubuntu卸载node和npm

    sudo apt-get remove --purge npm sudo apt-get remove --purge nodejs sudo apt-get remove --purge nodej ...

  3. MySql General error:2006

    当启用模块时发生Mysql数据库错误,错误信息见附件,实际是“General error: 2006 MySQL server has gone away......”错误. 解决方法:找到my.in ...

  4. redis笔记_源码_跳表skiplist

    参照:https://juejin.im/post/57fa935b0e3dd90057c50fbc#comment http://redisbook.com/preview/skiplist/dat ...

  5. 关于 argc 和 argv

    https://stackoverflow.com/questions/3898021/regarding-mainint-argc-char-argv 当使用命令行启动程序,或者给程序传输参数时,可 ...

  6. thinkphp 变量输出

    在模板中输出变量的方法很简单,例如,在控制器中我们给模板变量赋值: 大理石平台支架 $name = 'ThinkPHP'; $this->assign('name',$name); $this- ...

  7. BCB编写DLL终极手册

    一. 编写 DLL File/New/Dll 生成 Dll 的向导,然后能够添加导出函数和导出类 导出函数:extern "C" __declspec(dllexport) Exp ...

  8. 141 x的平方根

    原题网址:http://www.lintcode.com/zh-cn/problem/sqrtx/ 实现 int sqrt(int x) 函数,计算并返回 x 的平方根. 您在真实的面试中是否遇到过这 ...

  9. python笔记三

    # 数据读写不一定是文件,也可以在内存中读写 # StringIO就是在内存中读写str from io import StringIO f = StringIO() # 要把str写入StringI ...

  10. Linux后台运行java的jar包后台运行java -jar 命令

    为什么java -jar 的命令终端的窗口关闭就停止运行了??tomcat中war的就不会? 关闭终端的窗口相当于ctrl+c的命令,关闭了窗口就相当于停止了java -jar这个进程,即ctrl+c ...