传送门

解题思路

第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以由$i-1​$次扔一个正面或者$i​$次扔一个背面得到,化简后可得 : $f[i]=f[i-1]+1/p​$。

第二问就比较玄学了,设$g[i]$表示扔了$i$次正面向上花费的期望,那么考虑如果第$i$次到正面,其实次数等于$f[i-1]+1$,如果扔到背面,次数等于$f[i]+1$。所以转移方程:$g[i]=p*(g[i-1]+2*(f[i-1]+1)-1)+(1-p)*(g[i]+2*(f[i]+1)-1)$,化简后可得:$g[i]=g[i-1]+2*f[i-1]-2*f[i]+(1+2*f[i])/p$。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std;
const int MAXN = ; int k;
double p,f[MAXN],g[MAXN]; int main(){
while(~scanf("%d",&k)){if(!k) break;
scanf("%lf",&p);
f[]=0.0;g[]=0.0;
for(int i=;i<=k;i++) f[i]=f[i-]+1.0/p;
for(int i=;i<=k;i++)
g[i]=g[i-]+*f[i-]-*f[i]+(+*f[i])/p;
printf("%.3lf %.3lf\n",f[k],g[k]);
}
return ;
}

poj 3682 King Arthur's Birthday Celebration (期望dp)的更多相关文章

  1. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  2. poj-3682 King Arthur's Birthday Celebration

    C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...

  3. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  4. 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】

    题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]=  c(i-1,k-1)*p^k*(1-p)^( ...

  5. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  6. King Arthur's Birthday Celebration

    每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...

  7. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  8. hdu4337 King Arthur's Knights

    King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  9. poj 2096 , zoj 3329 , hdu 4035 —— 期望DP

    题目:http://poj.org/problem?id=2096 题目好长...意思就是每次出现 x 和 y,问期望几次 x 集齐 n 种,y 集齐 s 种: 所以设 f[i][j] 表示已经有几种 ...

随机推荐

  1. 3. Vim入门教程

    1. 基本概念 1.1 了解Vim的三个基本模式 当我们安装完一个编辑器后,肯定会打开它,然后在里面输入点什么东西,但是打你打开Vim后,想要输入点什么却发现自己什么都没有输入,所以在写点东西之前,先 ...

  2. Date转换为LocalDateTime

    一.在Java 8中将Date转换为LocalDateTime 方法1: 将Date转换为LocalDatetime,我们可以使用以下方法: 1.从日期获取ZonedDateTime并使用其方法toL ...

  3. QTableWidget学习

    一.这次项目需要用到,可以在tablewidget中添加item,并且可以通过鼠标的右键选项进行一些打开.删除等操作. 1.在构造函数中定制右键菜单选项 ui.tableWidget_2->se ...

  4. C4D中python初探

    use_name = input('请输入账号') password = input('请输入密码') if use_name == 'alex' and password == 'alex3714' ...

  5. HDU 2586 /// tarjan离线求树上两点的LCA

    题目大意: 询问一棵树里 u 到 v 的距离 可由 dis[ u到根 ] + dis[ v到根 ] - 2*dis[ lca(u,v) ] 得到 https://blog.csdn.net/csyzc ...

  6. 【23. 合并K个排序链表】【困难】【优先队列/堆排序】

    合并 k 个排序链表,返回合并后的排序链表.请分析和描述算法的复杂度. 示例: 输入: [ 1->4->5, 1->3->4, 2->6] 输出: 1->1-> ...

  7. vue+nginx配置二级域名

    [1]修改路由文件 [2]修改配置文件 [3]修改本机nginx配置文件 [4]修改服务器nginx配置文件 [5]重启nginx文件,用二级域名访问 http://192.168.199.xxx:7 ...

  8. capserjs-prototype(中)

    evaluateOrDie() 具体样式: evaluateOrDie(Function fn[, String message, int status]) Evaluates an expressi ...

  9. IDEA 打开Run Dashboard 分组启动

    一,项目文件夹中,找到 .idea-->workspace.xml 添加: <component name="RunDashboard"> <option ...

  10. Virtualenv开发文档

    virtualenv是创建孤立的Python环境的工具.正在解决的基本问题是依赖和版本之一以及间接权限.想象一下,您有一个需要LibFoo版本1的应用程序,但另一个应用程序需要版本2.如何使用这两个应 ...