@description@

给定一个包含 n 个小写字母的字符串 s,用 s 生成 n 个串 t1...n,其中 ti 等于字符串 s 将第 i 个字符替换为 * 得到的字符串。

特别注意:这里的 * 只是一个字符,并不具有其他含义(如通配符)。

求有多少字符串,在 {s, t1, t2, ..., tn} 中作为至少一个字符串的子串出现。

戳我查看原题o.o

@solution@

不包含 * 的子串即 s 的子串,经典问题。因此,我们只需要考虑 ti 中包含 * 的子串。

考虑 ti 中一个包含 * 的子串,总可以用 s[1...i-1] 的一个后缀 + * + s[i+1...n] 的一个前缀来表示。

因为 * 是固定的,所以又可以用一个二元组 (s[1...i-1]的某后缀, s[i+1...n]的某前缀) 表示一个含 * 的子串。

考虑建出正着建一遍后缀自动机 sam1,反着建一遍后缀自动机 sam2。

则 s[1...i-1] 在 sam1 中对应的结点到根的路径上的所有结点都可以与 s[i+1...n] 在 sam2 中对应的结点到根的路径上的所有结点结合成二元组。

接下来怎么统计?考虑 sam1 中的每个点,求出它的子树内所有结点对应到 sam2 上的链的并集,这个并集就是该点的贡献。

链并集有一个众所周知的做法:将点按照 dfs 序来排序,用所有点到根的链信息减去 dfs 序相邻两个点的 lca 到根的链信息。

因为要求子树内所有点的链并集,不难想到线段树合并。然后发现线段树合并的确可以维护(每次 pushup 时考虑左儿子的最右边的点与右儿子的最左边的点的 lca)。

注意一下空串是合法的。

时间复杂度 O(nlogn)(如果倍增求 lca 就是 O(nlog^2n))。

@accepted code@

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; typedef long long ll; const int MAXN = 200000; #define rep(G, x) for(Graph::edge *p=G.adj[x];p;p=p->nxt)
struct Graph{
struct edge{
edge *nxt; int to;
}edges[2*MAXN + 5], *adj[MAXN + 5], *ecnt;
Graph() {ecnt = edges;}
void addedge(int u, int v) {
edge *p = (++ecnt);
p->to = v, p->nxt = adj[u], adj[u] = p;
p = (++ecnt);
p->to = u, p->nxt = adj[v], adj[v] = p;
}
}G1, G2; struct SAM{
int fa[MAXN + 5], len[MAXN + 5], ch[26][MAXN + 5];
int root, ncnt, lst;
SAM() {root = ncnt = lst = 1; len[0] = -1;}
void copy(int nq, int q) {
for(int i=0;i<26;i++)
ch[i][nq] = ch[i][q];
fa[nq] = fa[q], len[nq] = len[q];
}
int extend(int x) {
int p = lst, nw = (++ncnt);
len[nw] = len[lst] + 1, lst = nw;
while( p && ch[x][p] == 0 )
ch[x][p] = nw, p = fa[p];
if( !p ) fa[nw] = root;
else {
int q = ch[x][p];
if( len[p] + 1 == len[q] )
fa[nw] = q;
else {
int nq = (++ncnt); copy(nq, q);
len[nq] = len[p] + 1, fa[q] = fa[nw] = nq;
while( p && ch[x][p] == q )
ch[x][p] = nq, p = fa[p];
}
}
return nw;
}
}S1, S2; int cnt[MAXN + 5], fir[MAXN + 5], dfn[2*MAXN + 5], dep[MAXN + 5], dcnt;
void dfs1(int x, int f) {
dfn[++dcnt] = x, fir[x] = dcnt, dep[x] = dep[f] + 1;
rep(G2, x) {
if( p->to == f ) continue;
dfs1(p->to, x), dfn[++dcnt] = x;
}
cnt[x] = S2.len[x] + 1;
}
int lg[2*MAXN + 5], st[20][2*MAXN + 5];
void get_st() {
for(int i=1;i<=dcnt;i++) st[0][i] = dfn[i];
for(int i=2;i<=dcnt;i++) lg[i] = lg[i >> 1] + 1;
for(int j=1;j<20;j++) {
int t = (1 << (j - 1));
for(int i=1;i+t<=dcnt;i++)
st[j][i] = (dep[st[j-1][i]] < dep[st[j-1][i+t]] ? st[j-1][i] : st[j-1][i+t]);
}
}
int lca(int x, int y) {
int l = fir[x], r = fir[y];
if( l > r ) swap(l, r);
int k = lg[r - l + 1], p = (1 << k);
return (dep[st[k][l]] < dep[st[k][r-p+1]] ? st[k][l] : st[k][r-p+1]);
} struct segtree{
struct node{
node *ch[2];
int lx, rx; ll res;
}pl[20*MAXN + 5], *NIL, *ncnt;
segtree() {
NIL = ncnt = pl;
NIL->ch[0] = NIL->ch[1] = NIL;
NIL->lx = NIL->rx = NIL->res = 0;
}
node *newnode() {
ncnt++;
ncnt->ch[0] = ncnt->ch[1] = NIL;
ncnt->lx = ncnt->rx = ncnt->res = 0;
return ncnt;
}
void pushup(node *x) {
x->lx = (x->ch[0] == NIL ? x->ch[1]->lx : x->ch[0]->lx);
x->rx = (x->ch[1] == NIL ? x->ch[0]->rx : x->ch[1]->rx);
x->res = x->ch[0]->res + x->ch[1]->res;
if( x->ch[0] != NIL && x->ch[1] != NIL )
x->res -= cnt[lca(dfn[x->ch[0]->rx], dfn[x->ch[1]->lx])];
}
void insert(node *&rt, int l, int r, int p) {
if( rt == NIL ) rt = newnode();
if( l == r ) {
rt->lx = rt->rx = p, rt->res = cnt[dfn[p]];
return ;
}
int m = (l + r) >> 1;
if( p <= m ) insert(rt->ch[0], l, m, p);
else insert(rt->ch[1], m + 1, r, p);
pushup(rt);
}
node *merge(node *rt1, node *rt2) {
if( rt1 == NIL ) return rt2;
if( rt2 == NIL ) return rt1;
rt1->ch[0] = merge(rt1->ch[0], rt2->ch[0]);
rt1->ch[1] = merge(rt1->ch[1], rt2->ch[1]);
pushup(rt1); return rt1;
}
}T;
segtree::node *rt[MAXN + 5]; ll ans;
void dfs2(int x, int f) {
rep(G1, x) {
if( p->to == f ) continue;
dfs2(p->to, x);
rt[x] = T.merge(rt[x], rt[p->to]);
}
ans += rt[x]->res * (S1.len[x] - S1.len[f]);
} char s[MAXN + 5]; int n;
int pos1[MAXN + 5], pos2[MAXN + 5];
ll get_num() {
ll ret = 0;
for(int i=1;i<=S1.ncnt;i++)
ret += S1.len[i] - S1.len[S1.fa[i]];
return ret;
}
int main() {
scanf("%s", s + 1), n = strlen(s + 1);
for(int i=1;i<=n;i++) pos1[i] = S1.extend(s[i] - 'a');
for(int i=n;i>=1;i--) pos2[i] = S2.extend(s[i] - 'a');
pos1[0] = pos2[n+1] = 1;
for(int i=2;i<=S1.ncnt;i++) G1.addedge(S1.fa[i], i);
for(int i=2;i<=S2.ncnt;i++) G2.addedge(S2.fa[i], i);
ans = get_num();
dfs1(1, 0), get_st();
for(int i=0;i<=S1.ncnt;i++) rt[i] = T.NIL;
for(int i=1;i<=n;i++) T.insert(rt[pos1[i-1]], 1, dcnt, fir[pos2[i+1]]);
dfs2(1, 0);
printf("%lld\n", ans);
}

@details@

F 题好像比 E 题简单来着。。。

@codeforces - 1276F@ Asterisk Substrings的更多相关文章

  1. Codeforces 1276F - Asterisk Substrings(SAM+线段树合并+虚树)

    Codeforces 题面传送门 & 洛谷题面传送门 SAM hot tea %%%%%%% 首先我们显然可以将所有能够得到的字符串分成六类:\(\varnothing,\text{*},s, ...

  2. codeforces #271D Good Substrings

    原题链接:http://codeforces.com/problemset/problem/271/D 题目原文: D. Good Substrings time limit per test 2 s ...

  3. Codeforces 316G3 Good Substrings 字符串 SAM

    原文链接http://www.cnblogs.com/zhouzhendong/p/9010851.html 题目传送门 - Codeforces 316G3 题意 给定一个母串$s$,问母串$s$有 ...

  4. CodeForces 550A Two Substrings(模拟)

    [题目链接]click here~~  [题目大意]:  You are given string s. Your task is to determine if the given string s ...

  5. Codeforces 271D - Good Substrings [字典树]

    传送门 D. Good Substrings time limit per test 2 seconds memory limit per test 512 megabytes input stand ...

  6. Codeforces.392E.Deleting Substrings(区间DP)

    题目链接 \(Description\) \(Solution\) 合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i| ...

  7. CodeForces 1110H. Modest Substrings

    题目简述:给定$1 \leq l \leq r \leq 10^{800}$,求一个长度为$n \leq 2000$的数字串$s$,其含有最多的[好]子串.一个串$s$是[好]的,如果将其看做数字时无 ...

  8. Codeforces Round #606 (Div. 1) Solution

    从这里开始 比赛目录 我菜爆了. Problem A As Simple as One and Two 我会 AC 自动机上 dp. one 和 two 删掉中间的字符,twone 删掉中间的 o. ...

  9. Codeforces Round #306 (Div. 2) A. Two Substrings 水题

    A. Two Substrings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...

随机推荐

  1. RxJS/Cycle.js 与 React/Vue 相比更适用于什么样的应用场景?

    RxJS/Cycle.js 与 React/Vue 相比更适用于什么样的应用场景? RxJS/Cycle.js 与 React/Vue 相比更适用于什么样的应用场景? - 知乎 https://www ...

  2. 如何收缩Mysql的ibdata1文件

    ibdata1是MySQL数据库中一个数据文件了,你会发现它来越大了,下面我来介绍收缩Mysql的ibdata1文件大小方法. 如果你有使用InnoDB来存储你的Mysql表,使用默认设置应该会碰到个 ...

  3. 跟我一起做一个vue的小项目(十一)

    接下来我们进行的是详情页动态路由及banner布局 先看页面的效果 下面是代码部分 <template> <div> <div class="banner&qu ...

  4. bzoj 4004 [JLOI2015]装备购买——拟阵证明贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 看Zinn博客水过去…… 运用拟阵可以证明按价格从小到大买的贪心是正确的.但自己还不会 ...

  5. PhpExcel参考网址

    参考网址: http://www.cnblogs.com/yuwensong/p/3771787.html

  6. 51nod1947 栈的代价和

    1947 栈的代价和 n是5e7 只能O(n)做 大力生成函数转形式幂级数再解方程 这个是广义二项式定理: https://baike.baidu.com/item/%E4%BA%8C%E9%A1%B ...

  7. log4j2----JAVA日志打印

    注意:本篇文章是以log4j2.x 为例的,并不是log4j 1.x log4j 就是log for java  , log4j已经被移植到了C,C++,C#,Perl,Python和Ruby等语言中 ...

  8. jnhs-SpringMVC jsp页面向controller传递参数的五种方式

    一共是五种传参方式: 一:直接将请求参数名作为Controller中方法的形参 public  String login (String username,String password)   : 解 ...

  9. T2848 列车调度(二分或dp)

    题目背景 自行脑补, 题目描述 有N辆列车,标记为1,2,3,…,N.它们按照一定的次序进站,站台共有K个轨道,轨道遵从先进先出的原则.列车进入站台内的轨道后可以等待任意时间后出站,且所有列车不可后退 ...

  10. 【NOJ2024】入栈序列和出栈序列

    入栈序列和出栈序列 时间限制(普通/Java):1000MS/3000MS         运行内存限制:65536KByte 总提交:293          测试通过:68 比赛描述 给出入栈序列 ...