A number sequence is defined as follows:

f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.

Given A, B, and n, you are to calculate the value of f(n).

InputThe input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed. 
OutputFor each test case, print the value of f(n) on a single line. 
Sample Input

1 1 3
1 2 10
0 0 0

Sample Output

2
5 原谅博主不会Markdown

#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); struct Matrix{
int a[][];
}; Matrix mul(Matrix a,Matrix b){
Matrix ans;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
ans.a[i][j]=;
for(int k=;k<=;k++){
ans.a[i][j]+=a.a[i][k]*b.a[k][j];
}
ans.a[i][j]%=mod;
}
}
return ans;
} Matrix q_pow(Matrix a,int b){
Matrix ans ;
ans.a[][]=ans.a[][]=;
ans.a[][]=ans.a[][]=;
while (b){
if(b&){
ans=mul(ans,a);
}
b>>=;
a=mul(a,a);
}
return ans;
} int main()
{
// ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin); int A,B,n; while (scanf("%d%d%d",&A,&B,&n)!=EOF&&A&&B&&n){
Matrix exa;
if(n<=){printf("%d\n",);
continue;
}
exa.a[][]=A;
exa.a[][]=B;
exa.a[][]=;
exa.a[][]=; exa=q_pow(exa,n-);
printf("%d\n",(exa.a[][]+exa.a[][])%);
}
return ;
}

HDU - 1005 Number Sequence (矩阵快速幂)的更多相关文章

  1. HDU - 1005 Number Sequence 矩阵快速幂

    HDU - 1005 Number Sequence Problem Description A number sequence is defined as follows:f(1) = 1, f(2 ...

  2. HDU 1005 Number Sequence(矩阵快速幂,快速幂模板)

    Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1 ...

  3. HDU - 1005 -Number Sequence(矩阵快速幂系数变式)

    A number sequence is defined as follows:  f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) m ...

  4. HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...

  5. UVA - 10689 Yet another Number Sequence 矩阵快速幂

                      Yet another Number Sequence Let’s define another number sequence, given by the foll ...

  6. Yet Another Number Sequence——[矩阵快速幂]

    Description Everyone knows what the Fibonacci sequence is. This sequence can be defined by the recur ...

  7. Yet another Number Sequence 矩阵快速幂

    Let’s define another number sequence, given by the following function: f(0) = a f(1) = b f(n) = f(n ...

  8. SDUT1607:Number Sequence(矩阵快速幂)

    题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1607 题目描述 A number seq ...

  9. hdu 5950 Recursive sequence 矩阵快速幂

    Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  10. Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)

    题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...

随机推荐

  1. SDUT-2140_判断给定图是否存在合法拓扑序列

    数据结构实验之图论十:判断给定图是否存在合法拓扑序列 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 给定一个有向图,判 ...

  2. 基于Spark Mllib的Spark NLP库

    SparkNLP的官方文档 1>sbt引入: scala为2.11时 libraryDependencies += "com.johnsnowlabs.nlp" %% &qu ...

  3. 微信小程序组件——bindtap和catchtap的区别

    了解知识点 DOM模型是一个树形结构,在DOM模型中,HTML元素是有层次的.当一个HTML元素上产生一个事件时,该事件会在DOM树中元素节点与根节点之间按特定的顺序传播,路径所经过的节点都会收到该事 ...

  4. 小爬爬5:scrapy介绍3持久化存储

    一.两种持久化存储的方式 1.基于终端指令的吃持久化存储: 特点:终端指令的持久化存储,只可以将parse方法的返回值存储到磁盘文件 因此我们需要将上一篇文章中的author和content作为返回值 ...

  5. Ubuntu 如何编译安装第三方库

    在工程应用中都会用到第三方库,标准库是在我们安装IDE环境或系统自带已经编译好的库,我们是可以直接调用的,而第三方库需要我们自己下载,编译和安装后才能使用,这里我们说的是Ubuntu如何使用cmake ...

  6. 基于opencv的RandomForest随机森林

    2.OpenCV函数使用 OpenCV提供了随机森林的相关类和函数.具体使用方法如下: (1)首先利用CvRTParams定义自己的参数,其格式如下 CvRTParams::CvRTParams(in ...

  7. 应用node-webkit(NWJS)把BS架构的网址封装成桌面应用

    一.目的 给WEB应用的用户提供一款同一的浏览器,访问固定网址,封装一些常用插件(如flash插件等) 二.步骤 1.下载node-webkit,官方网址https://nwjs.io/ 2.解压下载 ...

  8. jmeter循环和计数器

  9. Java练习 SDUT-1131_最大公约数与最小公倍数

    C/C++训练1---最大公约数与最小公倍数 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 输入两个正整数,求它们的最 ...

  10. 安装pip3遇到:E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a solution).

    安装pip3遇到:E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a solution). 具 ...