说明

  1. Catalan(i) 表示卡特兰数的第 i 项。

题目链接:http://codeforces.com/problemset/problem/1152/C

题目大意

  有 n 个左括号和 n 个右括号,它们一共可以组成 Catalan(n) 个合法括号字符串,把这些字符串组建成 Trie 树,求这棵树的二分图最大匹配。

分析

  设 Node(L, R) 表示 Trie 树的一个节点,这个节点含有 L 个左括号和 R 个右括号。
  虽然说是求二分图最大匹配,不过这道题却不能用求最大匹配的的方法求(超时 + 爆栈),注意到这棵 Trie 是棵二叉树且根节点到每个叶子节点的距离都是一样的,都为 2*n,考虑第 2*i - 1 层和 2*i 层的边,首先 2*i 层的可选边数肯定大于等于 2*i - 1 层的可选边数,这是肯定的,因为越往下分支越多。而最优解在第 2*i - 1 层和 2*i 层的匹配情况在无非这三种之一:
  1. 全选第 2*i - 1 层的边。
  2. 全选第 2*i 层的边。
  3. 混合选。

  设策略1在每一层所选的边数为:A1,A2,……A2n。(A2i == 0)

  设策略2在每一层所选的边数为:B1,B2,……B2n。(B2i-1 == 0)

  设策略3在每一层所选的边数为:C1,C2,……C2n

  首先,策略1肯定不是最优解,因为对于策略1的每一非0项 A2i-1 都有 B2i >= A2i-1。同理,策略3也不是,因为选择第 2*i - 1 层的一条边必然要取消选择第 2*i 层的对应边,策略3顶多和策略2一样优。

  因此匹配只考虑策略2即可。

代码如下

 #include <bits/stdc++.h>
using namespace std; #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< string, int > PSI;
typedef set< int > SI;
typedef vector< int > VI;
typedef map< int, int > MII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e9 + ;
const int maxN = 1e3 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; int n;
// dp[l][r]表示以当前节点(已经选了 l 个左括号和 r 个右括号)为根的子树的最大匹配种数。
LL dp[maxN][maxN]; int main(){
INIT();
cin >> n;
dp[n][n] = ;
// 枚举 l + r
rFor(k, * n - , ) {
int tmp = min(n, k);
// tmp 为 l 的上限,(k + 1) / 2 为 l 的下限
// 下限的选取保证了 l >= r
rFor(l, tmp, (k + ) / ) {
int r = k - l;
//assert(l >= r);
if(l < n) dp[l][r] += dp[l + ][r];
dp[l][r] += dp[l][r + ];
dp[l][r] += (l + r) % ; // 只要匹配偶数层即可
dp[l][r] %= mod;
}
} cout << dp[][] << endl;
return ;
}

CodeForces 1152D Neko and Aki's Prank的更多相关文章

  1. codeforces#1152D. Neko and Aki's Prank(dp)

    题目链接: https://codeforces.com/contest/1152/problem/D 题意: 给出一个$n$,然后在匹配树上染色边,每个结点的所有相邻边只能被染色一次. 问,这颗树上 ...

  2. Neko and Aki's Prank CodeForces - 1152D (括号序列,dp)

    大意: 将所有长度为2*n的合法括号序列建成一颗trie树, 求trie树上选出一个最大不相交的边集, 输出边集大小. 最大边集数一定不超过奇数层结点数. 这个上界可以通过从底层贪心达到, 所以就转化 ...

  3. Codeforce Round #554 Div.2 D - Neko and Aki's Prank

    dp 找规律 我好菜啊好菜啊,完全没有思路. 在合法的括号序列中,左括号数一定大于等于右括号数的,所以我们可以先定义平衡度为左括号数-右括号数. 然后可以发现一个惊人的规律..就是在trie同一深度上 ...

  4. codeforces#1152C. Neko does Maths(最小公倍数)

    题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...

  5. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  6. CodeForces 1152E Neko and Flashback

    题目链接:http://codeforces.com/problemset/problem/1152/E 题目大意 有一个 1~n-1 的排列p 和长度为 n 的数组 a,数组b,c定义如下: b:b ...

  7. CodeForces 1152F2 Neko Rules the Catniverse (Large Version)

    题目链接:http://codeforces.com/problemset/problem/1152/F2 题目大意 见http://codeforces.com/problemset/problem ...

  8. CodeForces 1152F1 Neko Rules the Catniverse (Small Version)

    题目链接:http://codeforces.com/problemset/problem/1152/F1 题目大意 有 n 个星球,给定限制 m,从 x 星球走到 y 星球的条件是,$1 \leq ...

  9. Codeforces 1152D(dp)

    要点 寻找最多边的匹配的结论:贪心地从叶子开始找,最后答案都是奇数层下边的那条边. 设\(dp[i][j]\)表示当前长度为\(i\),平衡度为\(j\),平衡度为(数量减去)数量. 增加左右括号转移 ...

随机推荐

  1. Alibaba Cloud Toolkit,你确定不来尝鲜一下?

    阿里云出了新的工具,Alibaba Cloud Toolkit,看看“toolkit”这个名字就知道它是一个工具集. 没错!它就是一个工具集,一个集打包部署发布以及探索分析程序的工具集.而我,目前还停 ...

  2. 为delphi程序添加脚本功能,用脚本控制delphi程序

    使用微软的ActiveX Scripting技术,可以在应用程序中集成使用vbscript或这javascript脚本语言.在delphi中点击Component菜单的Import Activex C ...

  3. Java-Class-E:org.springframework.http.HttpStatus

    ylbtech-Java-Class-E:org.springframework.http.HttpStatus 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部 1. /* * C ...

  4. (16)centos7 日志文件

    常见日志文件 开机启动日志,只会记录本次信息 /var/log/boot.log 计划任务日志 /var/log/cron 开机内核检测信息 /var/log/dmesg 账号登录信息 /var/lo ...

  5. 【Stanford Machine Learning Open Course】学习笔记目录

    这里是斯坦福大学机器学习网络课程的学习笔记. 课程地址是:https://class.coursera.org/ml-2012-002/lecture/index 课程资料百度网盘分享链接:https ...

  6. 剑指offer——04二维数组中的查找

    题目: 数组中唯一只出现一次的数字.在一个数组中除一个数字只出现一次之外,其他数字都出现了三次.请找出那个只出现一次的数字. 题解: 如果一个数字出现三次,那么它的二进制表示的每一位(0或者1)也出现 ...

  7. 剑指offer——46数字序列中某一位的数字

    题目: 数字以0123456789101112131415…的格式序列化到一个字符序列中.在这个序列中,第5位(从0开始计数)是5,第13位是1,第19位是4,等等.请写一个函数,求任意第n位对应的数 ...

  8. 用scala 实现top N 排名

    object TopNApp { def main (args: Array[String]) { if (args != 3) { System.err.println("usage: & ...

  9. python获取全部股票每日基本面指标,用于选股分析、报表展示等

    接口:daily_basic 更新时间:交易日每日15点-17点之间 描述:获取全部股票每日重要的基本面指标,可用于选股分析.报表展示等. 积分:用户需要至少300积分才可以调取,具体请参阅本文最下方 ...

  10. wpf mvvm datagrid 中button绑定命令方法

    <DataGridTemplateColumn Header="设备状态" IsReadOnly="True" Width="150" ...