Most networking discussions are a jumble of acronyms. Forget the configuration details — what are the insights?

  • Networking is about communication
  • Text is the simplest way to communicate
  • Protocols are standards for reading and writing text

Beneath the details, networking is an IM conversation. Here’s what I wish someone told me when learning how computers communicate.

TCP: The Text Layer

The Transmission Control Protocol (TCP) provides the handy illusion that we can “just” send text between two computers. TCP relies on lower
levels
 and can send binary data, but ignore that for now:

  • TCP lets us Instant Message between computers

We IM with Telnet, the ‘notepad’ of networking: telnet sends and receives plain text using TCP. It’s a chat client peacefully free of ads and unsolicited buddy requests.

Let’s talk to Google using telnet (or putty,
a better utility):

telnet google.com 80
[connecting...]
Hello Mr. Google!

We connect to google.com on port 80 (the default for web requests) and send the message “Hello Mr. Google!”. We press Enter a few times and await the reply:

<html>
...
<h1>Bad Request</h1>
Your client has issued a malformed or illegal request
...
</html>

Malformed? Illegal? The mighty Google is not pleased. It didn’t understand us and sent HTML telling the same.

But, we had a conversation: text went in, and text came back. In other words:

Protocols: The Forms To Fill Out

Unstructured chats are too carefree — how does the server know what we want to do? We need a protocol (standard way of communicating) if we’re going to make sense.

We use protocols all the time

  • Putting “to” and “from” addresses in special places on an envelope
  • Filling out bank forms (special place for account number, deposit amount, etc.)
  • Saying “Roger” or “10-4” to indicate a radio request was understood

Protocols make communication clear.

Case Study: The HTTP Protocol

We see HTTP in every url: http://google.com/. What does it mean?

  • Connect to server google.com (Using TCP, port 80 by default)
  • Ask for the resource “/” (the default resource)
  • Format the request using the Hypertext Transport Protocol

HTTP is the “form to fill out” when asking for the resource. Using the HTTP format, the above request looks like this:

GET / HTTP/1.0

Remember, it’s just text! We’re asking for a file, through an IM session, using the format: [Command] [Resource] [Protocol Name/Version].

This command is “IM’d” to the server (your browser adds extra info, a detail for another time). Google’s server returns this response:

HTTP/1.0 200 OK
Cache-Control: private, max-age=0
Date: Sun, 15 Mar 2009 03:13:39 GMT
Expires: -1
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie: PREF=ID=5cc6…
Server: gws
Connection: Close <html>
(Google web page, search box, and cute logo)
</html>

Yowza. The bottom part is HTML for the browser to display. But why the junk up top?

Well, suppose we just got the raw HTML to display. But what about errors: if the server crashed, the file wasn’t there, or google just didn’t like us?

Some metadata (data about data) is useful. When we order a book from Amazon we expect a packing slip describing the order: the intended recipient, price, return information, etc. You don’t want a naked book just thrown
on your doorstep.

Protocols are similar: the recipient wants to know if everything was OK. Here we see infamous status codes like 404 (resource not found) or 200 (everything OK). These headers aren’t the real data — they’re the packing slip from the server.

Insights From Protocols

Studying existing, popular systems is a great way to understand engineering decisions. Here are a few:

Binary vs Plain Text

Binary data is more efficient than text, but more difficult to debug and generate (how many hex editors
do you know to use?). Lower-level protocols, the backbone of the internet, use binary data to maintain performance. Application-level protocols (HTTP and above) use text data for ease of interoperability. You don’t have religious wars about endian issues with
HTTP.

Stateful vs. Stateless

Some protocols are stateful, which means the server remembers the chat with the client. With SMTP, for example, the client opens a connection and issues commands one at a time (such as adding recipients to an email), and closes the connection. Stateful communication
is useful in transactions that have many steps or conditions.

Stateless communication is simpler: you send the entire transaction as one request. Each “instant message” stands on its own and doesn’t need the others. HTTP is stateless: you can request a webpage without introducing yourself to the server.

Extensibility

We can’t think of everything beforehand. How do we extend old protocols for new users?

HTTP has a simple and effective “header” structure: a metadata preamble that looks like “Header:Value”.

If you don’t recognize the header sent (new client, old server) just ignore it. If you were expecting a header but don’t see it (old client, new server), just use a default. It’s like having an “Anything else to tell us?” section in a survey.

Error Correction & Reliability

It’s the job of lower-level protocols like TCP to make sure data is transmitted reliably. But higher-level protocols (like HTTP) need to make sure it’s the right data. How are errors handled and communicated? Can the client just retry
or does the server need to reset state?

HTTP comes with its own set of error codes to handle a variety of situations.

Availability

The neat thing about networking is that works on one computer. Memcached is a great service to cache data. And guess what? It uses plain-old text commands (over TCP) to save and retrieve data.

You don’t need complex COM objects or DLLs – you start a Memcached server, send text in, and get text out. It’s language-neutral and easy to access because any decent OS supports networking. You can even telnet into Memcached to debug it.

Wireless routers are similar: they have a control panel available through HTTP. There’s no “router configuration program” — you just connect to it with your browser. The router serves up webpages, and when you submit data it makes the necessary configuration
changes.

Protocols like HTTP are so popular you can assume the user has a client.

Layering Protocols

Protocols can be layered. We might write a resume, which is part of a larger application, which is stuffed into an envelope. Each segment has its own format, blissfully unaware of the others. Your envelope doesn’t care about the resume — it just wants the to:
and from: addresses written correctly.

Many protocols rely on HTTP because it’s so widely used (rather than starting from scratch, like Memcached, which needs efficiency). HTTP has well-understood methods to define resources (URLs) and commands (GET and POST), so why not use them?

Web services do just that. The SOAP protocol crams XML inside of HTTP commands. The REST protocol embraces HTTP and uses the existing verbs as much as possible.

Remember: It’s All Made Up

Networking involves human conventions. Because plain text is ubiquitous and easy to use, it is the basis for most protocols. And TCP is the simplest, most-supported way to exchange text.

Remembering that everything is a plain text IM conversation helps me wrap my head around the inevitable networking issues. And sometimes you need to jump into HTTP to understand compression and caching.

Don’t just memorize the details; see protocols as strategies to solve communication problems. Happy networking.

A Simple Introduction To Computer Networking的更多相关文章

  1. Computer Networking: A Top Down Approach

    目录 Chapter 1: Computer Networks and the Internet 1. What is the Internet? 2. The Network Edge 3. The ...

  2. Note 2 for <Pratical Programming : An Introduction to Computer Science Using Python 3>

    Book Imformation : <Pratical Programming : An Introduction to Computer Science Using Python 3> ...

  3. MIT Introduction to Computer Science and Programming (Lesson one )

    MIT Introduction to Computer Science and Programming (Lesson one ) 这篇文是记载 MIT 计算机科学及编程导论 第一集 的笔记 Les ...

  4. Note 1 for <Pratical Programming : An Introduction to Computer Science Using Python 3>

    Book Imformation : <Pratical Programming : An Introduction to Computer Science Using Python 3> ...

  5. Introduction to Computer Science and Programming in Python--MIT

    学习总结--(Introduction to Computer Science and Programming in Python--MIT) 导论 主题 重新利用数据结构来表达知识 理解算法的复杂性 ...

  6. MITx: 6.00.1x Introduction to Computer Science and Programming Using Python Week 2: Simple Programs 4. Functions

    ESTIMATED TIME TO COMPLETE: 18 minutes We can use the idea of bisection search to determine if a cha ...

  7. Introduction to Computer Networks(网络架构与七层参考模式)

    Network Connectivity 1. Important terminologies 1) Link 设备连接的连线.Link本身既可以是有线的,也可以是无线的. 2) Node 设备.电脑 ...

  8. The Most Simple Introduction to Hypothesis Testing

    https://www.youtube.com/watch?v=UApFKiK4Hi8

  9. An Introduction to Computer Thinking

    1.Die Grundlage des Computers 1.1 Binärzahl in die Dezimalzahl umsetzen Bereiten nach Gewicht,dann b ...

随机推荐

  1. 1034 有理数四则运算 (20 分)C语言

    题目描述 本题要求编写程序,计算2个有理数的和.差.积.商. 输入描述: 输入在一行中按照"a1/b1 a2/b2"的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整 ...

  2. docker练习-容器和服务

    使用定义容器 Dockerfile Dockerfile定义容器内环境中发生的事情.对网络接口和磁盘驱动器等资源的访问在此环境中进行虚拟化,该环境与系统的其他部分隔离,因此您需要将端口映射到外部世界, ...

  3. docker仓库和dockerfile

    通过Dockerfile创建镜像 Dockerfile •  Dockerfile语法格式 –  FROM:基础镜像 –  MAINTAINER:镜像创建者信息 –  COPY:复制文件到镜像(所有文 ...

  4. 6.python在windows下用批处理文件在运行中输入程序名直接运行的方法

    最近由于平时自由时间比较多,在看一本python入门书籍,在里面学习了一种用windows下的批处理文件在电脑运行界面中直接输入程序名称就可运行的方法,现将其详细说明如下: 1.首先编写一个教程上的程 ...

  5. OSS上传图片无法在线预览的解决方案

    OSS上传图片无法在线预览的解决方案 最近在做的项目涉及到商品详情,由于前端用的flutter框架并且该详情为富文本,dart语言关于富文本的组件不是非常友好,当富文本中的图片无法在浏览器中直接预览的 ...

  6. IDEA错误: 找不到或无法加载主类

    错误: 找不到或无法加载主类 idea本身缓存问题 解决:清理缓存重启IDEA file-->invalidate Cache/restart 之后再重新build.

  7. 使用PE启动盘清空电脑登入密码

    1.PE启动盘制作过程 要制作一个启动盘可以使用很多工具来制作,比如老毛桃.U深度.大白菜等软件都可以制作PE启动盘.此处就用老毛桃制作PE启动盘为例(http://www.laomaotao.tv/ ...

  8. 竹马竹马chikuma

    [问题描述] 众所周知,zzh 和 heyi 是一对竹马竹马,他们从小一起学 C++,最后都成了著名的神犇.而时间回溯到他们童年,这天 zzh 邀请 heyi 来参加 zzh 举行的男性家庭聚会. 而 ...

  9. python修改列表

    替换元素 效果图: 代码: #创建一个列表 list = ['a','b','c','d','e','f'] print('修改前:',list) #修改元素 指定索引重设其值 list[1] = ' ...

  10. python判断是否是质数

    质数:只能被1和它自身整除 # 获取用户输入的数,判断是否是质数 num = int(input('输入一个任意的大于1的整数:')) i=2 # 创建一个变量,记录是否是质数,默认num是质数 fl ...