[题解]CSP2019 Solution - Part A
- 至于为什么是 \(\text{Part A}\) 而不是 \(\text{Day 1}\)
- 那是因为 Day1 T3 还没改
- (那这六题的 \(\text{solution}\) 就按难度顺序写吧)
- 感觉今年的画风和 \(\text{NOIP 2016}\) 有点像?
D1T1 code
Solution
- 直接模拟
- 如果 \(k<2^{n-1}\) 就输出 \(0\)
- 否则输出 \(1\) 并把 \(k\) 变成 \(2^n-1-k\)
- 然后 \(n\) 减掉 \(1\) 继续进行下去直到 \(n=0\) 为止
- 注意 \(k\) 要开 \(\text{unsigned long long}\)
- \(O(n)\)
Code
#include <bits/stdc++.h>
typedef unsigned long long ull;
int n;
ull k;
void solve(int n, ull k)
{
if (!n) return;
ull mid = 1ull << n - 1;
if (k < mid) putchar('0'), solve(n - 1, k);
else putchar('1'), solve(n - 1, mid - 1 - (k - mid));
}
int main()
{
std::cin >> n >> k;
solve(n, k);
return puts(""), 0;
}
D1T2 brackets
Solution
- 令 \(cnt_u\) 表示根到 \(u\) 的路径组成的括号序列,以 \(u\) 为右端点的合法括号序列个数
- 那么 \(k_u\) 就等于根到 \(u\) 的路径上所有点的 \(cnt\) 之和
- 易得如果存在 \(u\) 的一个深度最大的祖先 \(v\) 使得 \(v\) 到 \(u\) 的路径组成的括号序列是合法括号序列
- 那么 \(cnt_u=cnt_{fa_v}+1\)
- 对于求这个 \(v\) ,可以维护一个栈
- 从根到 \(u\) ,如果是左括号则直接加入,如果是右括号且栈不空则弹栈
- 那么如果 \(u\) 为右括号,那么 \(v\) 为这次弹出的括号对应的点
- 而对于求出所有的 \(u\) ,可以在对树 \(\text{DFS}\) 的过程中维护这个栈,在 \(\text{DFS}\) 回溯时把栈操作也退回即可
- \(O(n)\)
Code
#include <bits/stdc++.h>
template <class T>
inline void read(T &res)
{
res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
if (bo) res = ~res + 1;
}
typedef long long ll;
const int N = 5e5 + 5;
int n, fa[N], ecnt, nxt[N], adj[N], go[N], stk[N], top, cnt[N];
char s[N];
ll sum[N], ans;
void add_edge(int u, int v)
{
nxt[++ecnt] = adj[u]; adj[u] = ecnt; go[ecnt] = v;
}
void dfs(int u)
{
int tf = 0;
if (s[u] == '(') stk[++top] = u;
else if (top) cnt[u] = cnt[fa[tf = stk[top--]]] + 1;
sum[u] = sum[fa[u]] + cnt[u];
ans ^= sum[u] * u;
for (int e = adj[u], v = go[e]; e; e = nxt[e], v = go[e])
dfs(v);
if (s[u] == '(') top--;
else if (tf) stk[++top] = tf;
}
int main()
{
int x;
read(n);
scanf("%s", s + 1); n = strlen(s + 1);
for (int i = 2; i <= n; i++) read(x), add_edge(fa[i] = x, i);
dfs(1);
return std::cout << ans << std::endl, 0;
}
D2T1 meal
Solution
- 如果没有一半的限制,那么答案为
- \[\prod_{i=1}^n(1+\sum_{j=1}^ma_{i,j})-1
\] - 而出现次数超过一半的主要食材最多 \(1\) 种
- 故可以枚举超过一半的主要食材是哪种,并把对应的方案数从上式种扣掉即可
- 假设确定了一种食材 \(x\) ,考虑如何求这种食材出现超过一半的方案数
- 设 \(u_i=a_{i,x}\) , \(v_i=\sum_{j=1,j\ne x}^ma_{i,j}\)
- 问题就转化成了有 \(n\) 个变量,对于第 \(i\) 个变量有 \(u_i\) 种方法使其为 \(1\) , \(v_i\) 种方法使其为 \(-1\) ,\(1\) 种方法使其为 \(0\),求有多少种方案使得 \(1\) 的个数严格大于 \(-1\) (所有变量的和严格大于 \(0\) )
- 于是可以 \(\text{DP}\) :设 \(f[i][j]\) 表示前 \(i\) 个变量和为 \(j\) 的方案数(\(j\) 可以为负),转移时枚举下一个变量的取值
- \(O(mn^2)\)
Code
#include <bits/stdc++.h>
template <class T>
inline void read(T &res)
{
res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
if (bo) res = ~res + 1;
}
const int N = 105, E = 205, M = 2005, rqy = 998244353;
int n, m, a[N][M], f[N][E], sum[N], tmp[N], ans = 1;
inline void add(int &a, const int &b)
{
a += b; if (a >= rqy) a -= rqy;
}
inline void sub(int &a, const int &b)
{
a -= b; if (a < 0) a += rqy;
}
int main()
{
read(n); read(m);
for (int i = 1; i <= n; i++) sum[i] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
read(a[i][j]), add(sum[i], a[i][j]);
for (int i = 1; i <= n; i++) ans = 1ll * ans * sum[i] % rqy;
sub(ans, 1);
for (int i = 1; i <= m; i++)
{
for (int j = 1; j <= n; j++) tmp[j] = sum[j], sub(tmp[j], a[j][i]), sub(tmp[j], 1);
for (int j = -n; j <= n; j++)
for (int k = 0; k <= n; k++)
f[k][j + n] = 0;
f[0][n] = 1;
for (int j = 1; j <= n; j++)
for (int k = -n; k <= n; k++)
{
add(f[j][k + n], f[j - 1][k + n]);
if (k > -n) add(f[j][k + n], 1ll * f[j - 1][k - 1 + n] * a[j][i] % rqy);
if (k < n) add(f[j][k + n], 1ll * f[j - 1][k + 1 + n] * tmp[j] % rqy);
}
for (int j = 1; j <= n; j++) sub(ans, f[n][j + n]);
}
return std::cout << ans << std::endl, 0;
}
[题解]CSP2019 Solution - Part A的更多相关文章
- [题解]CSP2019 Solution - Part B
\(\text{orz}\) 一波现场 \(\text{A}\) 掉 \(\text{D1T3}\) 的神仙 D2T3 centroid Solution 考虑每个点 \(u\) 作为重心的贡献 假设 ...
- [SDOI2009]Bill的挑战——全网唯一 一篇容斥题解
全网唯一一篇容斥题解 Description Solution 看到这个题,大部分人想的是状压dp 但是我是个蒟蒻没想到,就用容斥切掉了. 并且复杂度比一般状压低, (其实这个容斥的算法,提出来源于y ...
- 【ZROI 537】贪心题 题解
[ZROI 537]贪心题 题解 Link Solution 最大的一边直接放到一起贪心即可 着重讲小的一边 已知对于二分图匹配,其答案即为最大流 令时间集合为 \(T = {1,2,3,\dots, ...
- 【题解】「CF363A」Soroban
哎呀呀,咕值要掉光了,赶快水篇题解( solution 这题就是个纯模拟,首先我们根据输出样例看一下输出算盘的规则. 看数最大的 720 ,我们发现,输出的算盘张这样(之所以我不用代码框而用 \(\K ...
- 题解 洛谷 P5279 【[ZJOI2019]麻将】
这题非常的神啊...蒟蒻来写一篇题解. Solution 首先考虑如何判定一副牌是否是 "胡" 的. 不要想着统计个几个值 \(O(1)\) 算,可以考虑复杂度大一点的. 首先先把 ...
- 洛谷 P7541 DOBRA 题解
hhh... 我又来写题解了 solution 题意简化 一个字符串,将所有的 _ 替换成大写字母,使结果字符串符合要求: 1.不包含三个连续 元音 或 辅音 字母: 2.字符串中至少有一个 L . ...
- 2018 Multi-University Training Contest 3 - HDU Contest
题解: solution Code: A. Ascending Rating #include<cstdio> const int N=10000010; int T,n,m,k,P,Q, ...
- leecode第四题(寻找两个有序数组的中位数)
题解: class Solution { public: double findMedianSortedArrays(vector<int>& nums1, vector<i ...
- codeforces round#509
博主水平不高, 只能打完$4$题, QAQ什么时候才能变强啊嘤嘤嘤 订正完6题了, 还想打今天下午的CF , 只能迟十分钟了, 掉分预定 A. Heist 输出 $max - min + n - 1 ...
随机推荐
- SDNU ACM-ICPC 2019 Competition For the End of Term(12-15)山师停训赛题解
马鸿儒 目前已补:01 03 06 07 08 09 10 11目前未补:02 04 05 12 苏用 1582.柳予欣的舔狗行为 1587.柳予欣的女朋友们在分享水果 1585.柳予欣和她女朋友的购 ...
- Vue 扩展插件
- vue2.x+elelmentUI@3.5 表格
<template> <section> <el-row> <el-col :span="16"> <!--表单--> ...
- Linux 内核 struct device 设备
在最低层, Linux 系统中的每个设备由一个 struct device 代表: struct device { struct device *parent; struct kobject kobj ...
- Linux 内核接口
USB 端点被绑在接口中. USB 接口只处理一类 USB 逻辑连接, 例如一个鼠标, 一个键盘, 或者一个音频流. 一些 USB 设备有多个接口, 例如一个 USB 扬声器可能有 2 个接口: 一个 ...
- ZR提高失恋测4
ZR提高失恋测4 比赛链接 A (方便讨论,设读入的串为\(S,T\)答案串为\(A\)) 首先\(*\)只会有一个 这是这道题目中非常重要的一个结论 简单证明一下? 因为\(*\)可以代表所有的字符 ...
- 【hdu 1850】Being a Good Boy in Spring Festival
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...
- git无密码push
近来项目中调研,jupyterlab和git的整合内容,git server我使用的gitbucket和bitbucket.(项目要求使用bitbucket,看错一个字母下载了两个镜像) gitbuc ...
- Channel 9视频整理【6】
GiGi Huang https://channel9.msdn.com/Niners/GiGiHuang
- Android2_分析项目的结构
一.项目结构 成功运行第一个AS项目HelloWorld之后,我们开始试着分析一下这个项目.毕竟知其然也要知其所以然. 这是一个安卓的项目结构(实际上这是安卓模式的项目结构) 我们可以切换成Proje ...