神经网络 (2)- Alexnet Training on MNIST
Win10 Anaconda下配置tensorflow+jupyter notebook环境
1.安装anaconda
到Anaconda官网下载,我是用的是Anaconda3-4.8.0版本(Python3对应的是Anaconda3,Python2对应的是Anaconda2),根据需要下载即可。下载好之后点击exe文件安装没什么好讲的。
唯一需要特别说明的是,安装的过程中要把添加路径到环境中选项选中!安装完成之后到命令行输入命令验证是否成功安装:
conda --version
- 安装tensorflow 官方步骤创建环境,
If you installed a TensorFlow as it said in official documentation: https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html#overview
I mean creating an environment called tensorflow and tested your installation in python, but TensorFlow can not be imported in jupyter, you have to install jupyter in your tensorflow environment too:
conda install jupyter notebook
After that I run a jupyter and it can import TensorFlow too:
jupyter notebook
AlexNet 识别MNIST
以上是AlexNet的结构,上下其实是一样的,共同用一套参数。 Similar structure to LeNet, AlexNet has more filters per layer, deeper and stacked. There are 5 convolutional layers, 3 fully connected layers and with Relu applied after each of them, and dropout applied before the first and second fully connected layer.AlexNet是2012年ImageNet比赛的冠军,虽然过去了很长时间,但是作为深度学习中的经典模型,AlexNet不但有助于我们理解其中所使用的很多技巧,而且非常有助于提升我们使用深度学习工具箱的熟练度。
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
#
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20
#
n_input = 784 #
n_classes = 10 #
dropout = 0.8 # Dropout
#
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32)
#
def conv2d(name, l_input, w, b):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
#
def max_pool(name, l_input, k):
return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
#
def norm(name, l_input, lsize=4):
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
#
def alex_net(_X, _weights, _biases, _dropout):
#
_X = tf.reshape(_X, shape=[-1, 28, 28, 1])
#
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
#
pool1 = max_pool('pool1', conv1, k=2)
#
norm1 = norm('norm1', pool1, lsize=4)
# Dropout
norm1 = tf.nn.dropout(norm1, _dropout)
#
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
#
pool2 = max_pool('pool2', conv2, k=2)
#
norm2 = norm('norm2', pool2, lsize=4)
# Dropout
norm2 = tf.nn.dropout(norm2, _dropout)
#
conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
conv4 = conv2d('conv4', conv3, _weights['wc4'], _biases['bc4'])
conv5 = conv2d('conv5', conv4, _weights['wc5'], _biases['bc5'])
pool5 = max_pool('pool5', conv5, k=2)
#
norm5 = norm('norm5', pool5, lsize=4)
# Dropout
norm5 = tf.nn.dropout(norm5, _dropout)
#
dense1 = tf.reshape(norm5, [-1, _weights['wd1'].get_shape().as_list()[0]])
dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
#
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
#
out = tf.matmul(dense2, _weights['out']) + _biases['out']
return out
#
weights = {
'wc1': tf.Variable(tf.random_normal([11, 11, 1, 64])),
'wc2': tf.Variable(tf.random_normal([5, 5, 64, 192])),
'wc3': tf.Variable(tf.random_normal([3, 3, 192, 384])),
'wc4': tf.Variable(tf.random_normal([3, 3, 384, 256])),
'wc5': tf.Variable(tf.random_normal([3, 3, 256, 256])),
'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
'out': tf.Variable(tf.random_normal([1024, 10]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([64])),
'bc2': tf.Variable(tf.random_normal([192])),
'bc3': tf.Variable(tf.random_normal([384])),
'bc4': tf.Variable(tf.random_normal([256])),
'bc5': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([1024])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
#
pred = alex_net(x, weights, biases, keep_prob)
#
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
#
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
#
init = tf.initialize_all_variables()
#
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
if step % display_step == 0:
#
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
#
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
step += 1
print ("Optimization Finished!")
#
print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.}))
神经网络 (2)- Alexnet Training on MNIST的更多相关文章
- 利用CNN神经网络实现手写数字mnist分类
题目: 1)In the first step, apply the Convolution Neural Network method to perform the training on one ...
- 第十六节,卷积神经网络之AlexNet网络实现(六)
上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...
- 卷积神经网络之AlexNet
由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...
- 第十五节,卷积神经网络之AlexNet网络详解(五)
原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...
- 卷积神经网络之AlexNet网络模型学习
ImageNet Classification with Deep Convolutional Neural Networks 论文理解 在ImageNet LSVRC-2010上首次使用大型深度卷 ...
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集
# 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...
- TensorFlow实战:Chapter-4(CNN-2-经典卷积神经网络(AlexNet、VGGNet))
转载自:http://blog.csdn.net/u011974639/article/details/76146822 项目:https://www.cs.toronto.edu/~frossard ...
- 学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习
MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .Ten ...
- 卷积神经网络CNN识别MNIST数据集
这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: impor ...
随机推荐
- 【WLAN常用语】—VAP
文章摘自:https://forum.huawei.com/enterprise/zh/forum.php?mod=viewthread&tid=396533&page=1#pid22 ...
- js面向对象(一)---基本的概念、属性、方法
一.什么是面向对象编程 1.用对象的思想去写代码,就是面向对象编程 2.我们一直在使用对象,如数组Array 时间Date //我们把系统自带的对象,叫做系统对象 var arr = new A ...
- htons(), ntohl(), ntohs(),htons()这4个函数(摘)
在C/C++写网络程序的时候,往往会遇到字节的网络顺序和主机顺序的问题.这是就可能用到htons(), ntohl(), ntohs(),htons()这4个函数.网络字节顺序与本地字节顺序之间的转换 ...
- 百度网盘不限速下载PanDownload网页版+IDM
1.安装配置IDM 下载链接:链接:https://pan.baidu.com/s/13P4ae-IPgi5Y13CGEZgmlg 提取码:do44 安装后在浏览器(推荐chrome或Firefox) ...
- NetCore2.2使用Nlog自定义日志写入路径配置方式
在一些特定场景的业务需求下,日志需要写入到不同的路径下提供日志分析.第一种:默认Nlog可以通过日志级别来区分路径,——优点是不需要额外配置,开箱即用——缺点是不够灵活,如果超过级别数量,则不满足需求 ...
- zic - 时区编辑器
总览 zic [ -v ] [ -d directory ] [ -l localtime ] [ -p posixrules ] [ -L leapsecondfilename ] [ -s ] [ ...
- sqlldr details
https://www.csee.umbc.edu/portal/help/oracle8/server.815/a67792/ch05.htm Loading into Empty and Non- ...
- Mybatis中$和#取数据的区别
Mybatis配置中,取出map入参的数据一般有两种方式#{key}和${key},下面是这两种取值的区别: 以同样的语句做对比: <select id="geUserByParam1 ...
- CF755G PolandBall and Many Other Balls/soj 57送饮料
题意:长度为n的序列,相邻两个或单独一个可以划分到一个组,每个元素最多处于一个组. 问恰好分割成k(1<=k<=m)段有多少种方案? 标程: #include<bits/stdc++ ...
- 36. 解决线程问题方式一(同步代码块synchronized)
解决线程问题: 方式一:同步代码块(synchronized) 语法: synchronized ("锁对象") { //需要锁定的代码 } ...