Win10 Anaconda下配置tensorflow+jupyter notebook环境

1.安装anaconda

到Anaconda官网下载,我是用的是Anaconda3-4.8.0版本(Python3对应的是Anaconda3,Python2对应的是Anaconda2),根据需要下载即可。下载好之后点击exe文件安装没什么好讲的。

唯一需要特别说明的是,安装的过程中要把添加路径到环境中选项选中!安装完成之后到命令行输入命令验证是否成功安装:

conda --version
  1. 安装tensorflow 官方步骤创建环境,

    If you installed a TensorFlow as it said in official documentation: https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html#overview

I mean creating an environment called tensorflow and tested your installation in python, but TensorFlow can not be imported in jupyter, you have to install jupyter in your tensorflow environment too:

conda install jupyter notebook

After that I run a jupyter and it can import TensorFlow too:

jupyter notebook

AlexNet 识别MNIST

以上是AlexNet的结构,上下其实是一样的,共同用一套参数。 Similar structure to LeNet, AlexNet has more filters per layer, deeper and stacked. There are 5 convolutional layers, 3 fully connected layers and with Relu applied after each of them, and dropout applied before the first and second fully connected layer.AlexNet是2012年ImageNet比赛的冠军,虽然过去了很长时间,但是作为深度学习中的经典模型,AlexNet不但有助于我们理解其中所使用的很多技巧,而且非常有助于提升我们使用深度学习工具箱的熟练度。

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf #
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20 #
n_input = 784 #
n_classes = 10 #
dropout = 0.8 # Dropout #
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #
def conv2d(name, l_input, w, b):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name) #
def max_pool(name, l_input, k):
return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name) #
def norm(name, l_input, lsize=4):
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name) #
def alex_net(_X, _weights, _biases, _dropout):
#
_X = tf.reshape(_X, shape=[-1, 28, 28, 1]) #
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
#
pool1 = max_pool('pool1', conv1, k=2)
#
norm1 = norm('norm1', pool1, lsize=4)
# Dropout
norm1 = tf.nn.dropout(norm1, _dropout) #
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
#
pool2 = max_pool('pool2', conv2, k=2)
#
norm2 = norm('norm2', pool2, lsize=4)
# Dropout
norm2 = tf.nn.dropout(norm2, _dropout) #
conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
conv4 = conv2d('conv4', conv3, _weights['wc4'], _biases['bc4'])
conv5 = conv2d('conv5', conv4, _weights['wc5'], _biases['bc5'])
pool5 = max_pool('pool5', conv5, k=2)
#
norm5 = norm('norm5', pool5, lsize=4)
# Dropout
norm5 = tf.nn.dropout(norm5, _dropout) #
dense1 = tf.reshape(norm5, [-1, _weights['wd1'].get_shape().as_list()[0]])
dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
#
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation #
out = tf.matmul(dense2, _weights['out']) + _biases['out']
return out #
weights = {
'wc1': tf.Variable(tf.random_normal([11, 11, 1, 64])),
'wc2': tf.Variable(tf.random_normal([5, 5, 64, 192])),
'wc3': tf.Variable(tf.random_normal([3, 3, 192, 384])),
'wc4': tf.Variable(tf.random_normal([3, 3, 384, 256])),
'wc5': tf.Variable(tf.random_normal([3, 3, 256, 256])),
'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
'out': tf.Variable(tf.random_normal([1024, 10]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([64])),
'bc2': tf.Variable(tf.random_normal([192])),
'bc3': tf.Variable(tf.random_normal([384])),
'bc4': tf.Variable(tf.random_normal([256])),
'bc5': tf.Variable(tf.random_normal([256])),
'bd1': tf.Variable(tf.random_normal([1024])),
'bd2': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
} #
pred = alex_net(x, weights, biases, keep_prob) #
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) #
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) #
init = tf.initialize_all_variables() #
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
#
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
if step % display_step == 0:
#
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
#
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
step += 1
print ("Optimization Finished!")
#
print ("Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.}))

神经网络 (2)- Alexnet Training on MNIST的更多相关文章

  1. 利用CNN神经网络实现手写数字mnist分类

    题目: 1)In the first step, apply the Convolution Neural Network method to perform the training on one ...

  2. 第十六节,卷积神经网络之AlexNet网络实现(六)

    上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接 ...

  3. 卷积神经网络之AlexNet

    由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...

  4. 第十五节,卷积神经网络之AlexNet网络详解(五)

    原文 ImageNet Classification with Deep ConvolutionalNeural Networks 下载地址:http://papers.nips.cc/paper/4 ...

  5. 卷积神经网络之AlexNet网络模型学习

    ImageNet Classification with Deep Convolutional Neural Networks 论文理解  在ImageNet LSVRC-2010上首次使用大型深度卷 ...

  6. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

  7. TensorFlow实战:Chapter-4(CNN-2-经典卷积神经网络(AlexNet、VGGNet))

    转载自:http://blog.csdn.net/u011974639/article/details/76146822 项目:https://www.cs.toronto.edu/~frossard ...

  8. 学习笔记TF057:TensorFlow MNIST,卷积神经网络、循环神经网络、无监督学习

    MNIST 卷积神经网络.https://github.com/nlintz/TensorFlow-Tutorials/blob/master/05_convolutional_net.py .Ten ...

  9. 卷积神经网络CNN识别MNIST数据集

    这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: impor ...

随机推荐

  1. CH1201 最大子序和 (单调队列)

    题目链接: AcWing 牛客 题目描述 输入一个长度为n的整数序列,从中找出一段不超过m的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7 当 ...

  2. python实现马赛克拼图!

    python实现马赛克拼图 直接上代码! 代码如下: #!/usr/local/bin/python3#  --*-- coding:utf8 --*-- import getoptimport sy ...

  3. php的生命周期的概述

    1. PHP是随着WEB服务器(apache)的启动而运行的: 2. PHP通过mod_php5.so()模块和服务器(apache)相连 3. PHP总共有三个模块:内核.Zend引擎.以及扩展层: ...

  4. centos 7 中安装Oracle 12c

    今天有需要在centos 7上安装oracle 12 所以上网查了一下安装流程,原贴转自:https://blog.csdn.net/github_39294367/article/details/7 ...

  5. SOCK_SEQPACKE

    The SOCK_SEQPACKET socket type is similar to the SOCK_STREAM type, and is also connection-oriented. ...

  6. python 打印出水仙花数

    打印出三位水仙花数方法及解释 num = 100while num <= 999: #这里num 小于等于999 则运行 填1000也可以 a = num % 10 #num对10取余 b = ...

  7. python编写微信公众号首图思路详解

    前言 之前一直在美图秀秀调整自己的微信公众号首图,效果也不尽如人意,老是调来调去,最后发出来的图片被裁剪了一大部分,丢失部分关键信息,十分恼火,于是想着用python写一个程序,把微信公众号首图的模式 ...

  8. js基础用法 ,基础语法

    js用法: HTML 中的脚本必须位于 <script> 与 </script> 标签之间. 脚本可被放置在 HTML 页面的 <body> 和 <head& ...

  9. css内容超出显示省略号

    CSS实现单行.溢出显示省略号(…) 把要设置的显示省略号的标签,加上以下的属性 overflow: hidden; /*超出不显示*/ text-overflow: ellipsis;/* 超出内容 ...

  10. thinkphp 快速缓存

    如果你的存储数据没有有效期的需求,那么系统还提供了一个快速缓存方法F可以用来更快的操作. 大理石平台厂家 F方法可以支持不同的存储类型,如果是文件类型的话,默认保存在DATA_PATH目录下面. 快速 ...