PP: Overviewing evolution patterns of egocentric networks by interactive construction of spatial layouts
Problem:
get an overall picture of how ego-networks evolve is a common challenging task.
Existing techniques: inspect the evolution patterns of ego-networks one after another.
Purpose:
how analysts can gain insights into the overall evolution patterns of ego-networks by interactively creating different spatial layouts.
Introduction:
1. What are ego-network and ego-network analysis?
The analysis of individuals in a network context is referred to as egocentric network analysis or ego-network analysis. An ego-network consists of a focal node, the nodes within its one-step neighbourhood and all the edges among these nodes
2. the content in a spatial layout
each dot represents a dynamic ego-network, clusters of dots indicate similar evolution patterns./ outlying dots exhibit uncommon evolution patterns.
3. interpretability and interactivity.
This technique is developed with interpretability and interactivity in mind
Related work:
1. ego-network visualization
i. Most of them focus on visualizing individual ego networks rather than revealing the overall evolution patterns;
ii. tree-ring layout.
iii. ...
2. dynamic network visualization
i. Two major approaches to analyze network evolution are animation and timeline.
- animation: Animation-based technique uses animated transition of visual elements (e.g., nodes and edges in a node-link diagram) to reveal the time dimension. An obvious drawback is that it is cognitively demanding to keep track of the changes.
- Timeline-based approaches, on the other hand, use small multiples (e.g., [6]), vertical or horizontal timeline (e.g., [24]) and circular layout (e.g., [51]) to represent the time dimension. However, as noted by Wu et al. these techniques mainly focus on tracking changes of the entire network rather than the characteristics of ego-networks.
3. techniques for creating spatial layouts for sensemaking
i.
Methodology:
- 两个要素: interpretability and interactivity. 可解释性和可交互性
- data model: 142 dynamic ego-networks for 24 months, and generated time series from these dynamic ego-networks( derived from node attributes---CEO,President,Vice President..., derived from network structure---size, density.)
- data transformation pipeline.
- time series -----> event sequences: input time series and event type, output extracted point/interval events.
- event sequences -----> feature vectors: a feature vector records the number of happened events E = {e1,e2,e3,e4...}.
- feature vectors -----> distance matrix: pairwise distance.
- distance matrix -----> spatial layout: use MDS to project distance matrix onto a spatial layout. Others: force-directed MDS/ t-SNE, slower and less scalable. Spatial layouts are often generated by dimensionality reduction techniques (e.g., PCA [28], MDS [49] and t-SNE [37])
- 评论, 由于是从ego-networks中抽取的特征作为time-series, 而又从time series中抽取events, 这一步当中虽然event记录了时间发生开始和结束,但是在step3转化为了feature vectors, 记录的是事件发生的次数,不包含时间发生顺序. 但是原文也提到,step2 and step3 can be replaced by other methods. ??为什么不直接对time series进行距离计算,这样更能发现两个dynamic ego-network之间的evolution 是否相似.
- The spatial layout reveals the evolution patterns. Each dot in spatial layouts presents a dynamic ego-network (24 ego-networks of one indivisual). If two ego-networks share similar evolution patterns, they will have similar number of events of the same type, thereby pulling them closer together in the spatial layout.
User interface:
- conducted a formative evaluation of the initial prototype with two experts. Interviewing two experts for about an hour.
Supplementary knowledge:
- Enron email network dataset: 142 employees. Each individual has a dynamic ego-network. An ego-network snapshot depicts the email communication of an employee with other employees in a given month. The data set spans 24 months. So there are 142 * 24 ego-networks/ 142 dynamic ego-networks, each having 24 snapshots.
PP: Overviewing evolution patterns of egocentric networks by interactive construction of spatial layouts的更多相关文章
- Classifying plankton with deep neural networks
Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...
- 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...
- 【注意力机制】Attention Augmented Convolutional Networks
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- 关于LDA的文章
转:http://www.zhizhihu.com/html/y2011/3228.html l Theory n Introduction u Unsupervised learning by ...
- KDD2015,Accepted Papers
Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Lev ...
- Java中实现SAX解析xml文件到MySQL数据库
大致步骤: 1.Java bean 2.DBHelper.java 3.重写DefaultHandler中的方法:MyHander.java 4.循环写数据库:SAXParserDemo.java ① ...
- 转 SSD论文解读
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/u010167269/article/det ...
- Computer Vision_33_SIFT:Speeded-Up Robust Features (SURF)——2006
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
随机推荐
- 网站SEO中服务器优化的三个问题
网站做好之后,站长第一件事就是想到去做SEO,但是有一些网站在做优化的时候,出现一些奇怪的情况,比如说优化已经不错的网站,排名突然就掉下来了:还有一些网站各项优化工作都是非常认真,但是排名却一直不上来 ...
- 生成随机数(C++)
// generate random number #include <iostream> #include <iomanip> #include <cstdlib> ...
- mui下拉上拉(明一)
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta name ...
- dcloud_base连接失败(root:admin123!@#qwe@tcp(192.168.8.205:3306)/dcloud_base) Error 1129: Host '192.168.8.205' is blocked because of many connection errors; unblock with 'mysqladmin flush-hosts'
mysql -uroot -p admin123!@#qwe show global variables like '%max_connect_errors%'; set global max_con ...
- 0级搭建类011-Oracle Linux 7.x安装(OEL 7.7) 公开
项目文档引子系列是根据项目原型,制作的测试实验文档,目的是为了提升项目过程中的实际动手能力,打造精品文档AskScuti. 项目文档引子系列目前不对外发布,仅作为博客记录.如学员在实际工作过程中需提前 ...
- 小白月赛22 D : 收集纸片
D:收集纸片 考察点 : 全排列,对数据范围的估计程度 坑点 : 注意算最后回到初始的那步距离 析题得侃 : 一看题目最短路,诶呦,这不是最拿手的 BFS 走最短路吗?哈哈,定睛一看 这么多目的地,这 ...
- C++基类、派生类、虚函数的几个知识点
1.尽管派生类中含有基类继承来的成员,但派生类初始化这部分变量需要调用基类的构造函数. class A { private: int x; virtual void f(){cout<<& ...
- BZOJ 2467: [中山市选2010]生成树
有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...
- java - jdk线程池详解
线程池参数详解 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUni ...
- java类及实例初始化顺序
1.静态变量.静态代码块初始化顺序级别一致,谁在前,就先初始化谁.从上而下初始化(只在类加载时,初始化一次) 2.非静态变量.非静态代码块初始化顺序级别一致,谁在前,就先初始化谁.从上而下初始化(只要 ...