某考试 T1 arg
题目描述
给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS.
输入格式
第一行两个整数 n, m. 接下来一行 m 个整数, 表示 A.
输出格式
一行一个整数表示答案.
样例
Input:
5 3
1 3 4
Output:
11
数据范围与提示
对于前 30% 的数据, n ≤ 9;
对于前 60% 的数据, n ≤ 12;
对于 100% 的数据, 1 ≤ m ≤ n ≤ 15.
我们可以很自然的想到用f[S][s]表示目前选了S中的数,并且LIS的状态是s的方案数。这样的话转移就考虑把还没出现的数加入,再考虑其对s的影响就可以找到下一个状态了,但是这里还有两个需要注意的事情:
1.如何保证最后的LIS中有a[] ?
这个还是比较好解决的,我们只需要再两个地方判定就行了:1.如果加入的数是给出的a[]中的一个元素a[i],我们需要判断S中是否包含所有a[1],,,a[i-1];2.最后我们计算答案的时候,只能加s状态的LIS=m的f[2^n-1][s] ,因为这样才能保证a[]是LIS中的一个。
2.看起来状态是有 (2^n)^2 个的,会不会炸掉?
简单分析就可以知道,s肯定是S的一个子集,因为只有出现过了才可能在LIS的队列中出现。所以其实状态最多只有 3^n个。(但我真的写不出3进制的操作啊,只好用map强行套个log)
(然后我来回答一下为什么我考试的时候这个题爆零了23333,考试的时候我的程序就和现在的很接近了,但是我把题目看成LIS必须只能是给出的数列而不是有很多LIS共存,然后就怒WA10个点 (出题人来解释一下为什么这样能过样例233333))
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<tr1/unordered_map>
#include<algorithm>
#define ll long long
using namespace std;
using namespace std::tr1;
const int maxn=40005;
unordered_map<int,int> mmp[maxn];
int ci[66],n,m,sum[maxn],a[20];
int to[maxn][20],pos[20],tmp[20]; inline void init(){
ci[0]=1;
for(int i=1;i<=30;i++) ci[i]=ci[i-1]<<1;
for(int i=1;i<ci[n];i++) sum[i]=sum[i^(i&-i)]+1;
for(int i=1;i<ci[n];i++)
for(int j=1;j<=n;j++){
to[i][j]=i;
for(int k=j-1;k<n;k++) if(ci[k]&i){
to[i][j]^=ci[k];
break;
}
to[i][j]|=ci[j-1];
}
} inline void solve(){
for(int i=1;i<=n;i++) if(pos[i]<=1) mmp[ci[i-1]][ci[i-1]]=1;
for(int S=1;S<ci[n];S++)
for(int s=S,TS,ts,now;s;s=(s-1)&S) if(mmp[S].count(s)){
now=mmp[S][s];
for(int k=1;k<=n;k++) if(!(ci[k-1]&S)){
if(pos[k]&&(S&tmp[pos[k]])!=tmp[pos[k]]) continue;
TS=S|ci[k-1];
ts=to[s][k];
mmp[TS][ts]+=now;
}
} int ans=0;
for(int i=1;i<ci[n];i++) if(sum[i]==m) ans+=mmp[ci[n]-1][i];
printf("%d\n",ans);
} int main(){
// freopen("arg.in","r",stdin);
// freopen("arg.out","w",stdout); scanf("%d%d",&n,&m),init();
for(int i=1;i<=m;i++) scanf("%d",a+i),pos[a[i]]=i;
tmp[1]=0;
for(int i=2;i<=m;i++) tmp[i]=tmp[i-1]|ci[a[i-1]-1];
solve();
return 0;
}
某考试 T1 arg的更多相关文章
- T2 Func<in T1,out T2>(T1 arg)
委托调用方法的4种方式. using System; using System.Collections.Generic; namespace ConsoleApplication1 { delegat ...
- 考试T1总结(又CE?!)
考试T1CE... 最近不适合考试 T1 扶苏是个喜欢一边听古风歌一边写数学题的人,所以这道题其实是五三原题.歌曲中的主人公看着墙边的海棠花,想起当年他其实和自己沿着墙边种了一排海棠,但是如今都已枯萎 ...
- 某考试T1 game
题目背景 无 题目描述 Alice 和 Bob 在一个圆环上玩游戏.圆环上有 n 个位置,按照顺时针顺序 依次标号为 1 到 n.Alice 和 Bob 分别有一个数字集合,集合中都是在 [1, n− ...
- 某考试 T1 lcm
把lcm写成 (a+n)*(b+n) / gcd(a+n,b+n). 因为gcd可以辗转相减,所以就成了gcd(abs(a-b),a+n),一个常量一个变量之间的gcd,我们可以直接把abs(a-b) ...
- 2019.2.25考试T1, 矩阵快速幂加速递推+单位根反演(容斥)
\(\color{#0066ff}{题解}\) 然后a,b,c通过矩阵加速即可 为什么1出现偶数次3没出现的贡献是上面画绿线的部分呢? 考虑暴力统计这部分贡献,答案为\(\begin{aligned} ...
- 2019.2.14 考试T1 FFT
\(\color{#0066ff}{ 题目描述 }\) 衡水二中的机房里经常有人莫名其妙地犇雷,leizi很生气,决定要找出那个犇雷的人 机房有n个人,每个人都认为机房里有两个人可能会犇雷,其中第i个 ...
- 某考试 T1 fair (18.5.1版)
转化一下模型:每天可以选1也可以选0,但是任意前i天(i<=n)1的个数都必须>=0的个数,求总方案数/2^n. 然后可以发现这是一个经典题,随便推一下公式发现等于 C(n,n/2)/2 ...
- 某考试 T1 str
一开始死磕sam,发现根本没法做...... 后来想了想,反正匹配子串的大部分不是sam就是 二分+hash啊,,,于是就想了想二分+hash,发现好像可以做啊! 就是假设我们要让 s1[1] 映射到 ...
- 某考试 T1 monopoly
可以很容易的发现,如果选了最高的房子,那么就不能再选了:否则在左边选一坨合法的,在右边选一坨合法的,拼起来还是合法的. 所以我们可以处理出,每个数的控制区间[L,R] (保证这个区间是其他数都小于它的 ...
随机推荐
- 通过HA方式操作HDFS
之前操作hdfs的时候,都是固定namenode的地址,然后去操作.这个时候就必须判断namenode的状态为active还是standby,比较繁琐,如果集群使用了HA的形式,就很方便了 直接上代码 ...
- css3纯手写loading效果
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 如何安装Virtual Box的VBox Guest Additions扩展程序
Virtual Box的默认安装是不包含Guest Addition这个扩展的,在实际使用过程中带来种种不便,比如只能通过小窗口访问虚拟机的操作系统,通过默认的右Ctrl切换鼠标,不能和宿主操作系统共 ...
- Spring事务管理全面分析
Spring 事务属性分析什么是事物 事务管理对于企业应用而言至关重要.它保证了用户的每一次操作都是可靠的,即便出现了异常的访问情况,也不至于破坏后台数据的完整性.就像银行的自助取款机,通常都能正常 ...
- 【整理】 vue-cli 打包后显示favicon.ico小图标
vue-cli 打包后显示favicon.ico小图标 https://www.cnblogs.com/mmzuo-798/p/9285013.html
- Python基础2 列表 元祖 字符串 字典 集合 文件操作 -DAY2
本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 ...
- No-2.常用 Linux 命令的基本使用
常用 Linux 命令的基本使用 01. 学习 Linux 终端命令的原因 Linux 刚面世时并没有图形界面,所有的操作全靠命令完成,如 磁盘操作.文件存取.目录操作.进程管理.文件权限 设定等 在 ...
- Linux下安装Redis5.0.2
1.下载redis 地址 http://download.redis.io/releases/redis-5.0.2.tar.gz 2.解压tar -zxf redis-5.0.2.tar.gz 3. ...
- 查询mysql所有表数据、字段信息
根据库名获取所有表的信息 SELECT * FROM information_schema.`TABLES` WHERE TABLE_SCHEMA = 'erp'; 根据库名获取所有表名称和表说明 S ...
- 提高CPU使用率
某些特殊时候,需要提升下cpu的利用率,此时……………………需要一个极其简单的脚本来完成! #!/bin/bash while (true);do { for i in $(seq 100000 10 ...