题目描述

小新正在玩一个简单的电脑游戏。

游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接。小新以某个机器人工厂为起点,按顺时针顺序依次将这 n 个机器人工厂编号为1~n,因为马路是环形的,所以第 n 个机器人工厂和第 1 个机器人工厂是由一段马路连接在一起的。小新将连接机器人工厂的这 n 段马路也编号为 1~n,并规定第 i 段马路连接第 i 个机器人工厂和第 i+1 个机器人工厂(1≤i≤n-1),第 n 段马路连接第 n 个机器人工厂和第 1个机器人工厂。

游戏过程中,每个单位时间内,每段马路上都会出现一些金币,金币的数量会随着时间发生变化,即不同单位时间内同一段马路上出现的金币数量可能是不同的。小新需要机器人的帮助才能收集到马路上的金币。所需的机器人必须在机器人工厂用一些金币来购买,机器人一旦被购买,便会沿着环形马路按顺时针方向一直行走,在每个单位时间内行走一次,即从当前所在的机器人工厂到达相邻的下一个机器人工厂,并将经过的马路上的所有金币收集给小新,例如,小新在 i(1≤i≤n)号机器人工厂购买了一个机器人,这个机器人会从 i 号机器人工厂开始,顺时针在马路上行走,第一次行走会经过 i 号马路,到达 i+1 号机器人工厂(如果 i=n,机器人会到达第 1 个机器人工厂),并将 i 号马路上的所有金币收集给小新。 游戏中,环形马路上不能同时存在 2 个或者 2 个以上的机器人,并且每个机器人最多能够在环形马路上行走 p 次。小新购买机器人的同时,需要给这个机器人设定行走次数,行走次数可以为 1~p 之间的任意整数。当马路上的机器人行走完规定的次数之后会自动消失,小新必须立刻在任意一个机器人工厂中购买一个新的机器人,并给新的机器人设定新的行走次数。

以下是游戏的一些补充说明:

  1. 游戏从小新第一次购买机器人开始计时。

  2. 购买机器人和设定机器人的行走次数是瞬间完成的,不需要花费时间。

  3. 购买机器人和机器人行走是两个独立的过程,机器人行走时不能购买机器人,购买完机器人并且设定机器人行走次数之后机器人才能行走。

  4. 在同一个机器人工厂购买机器人的花费是相同的,但是在不同机器人工厂购买机器人的花费不一定相同。

  5. 购买机器人花费的金币,在游戏结束时再从小新收集的金币中扣除,所以在游戏过程中小新不用担心因金币不足,无法购买机器人而导致游戏无法进行。也因为如此,游戏结束后,收集的金币数量可能为负。

现在已知每段马路上每个单位时间内出现的金币数量和在每个机器人工厂购买机器人需要的花费,请你告诉小新,经过 m 个单位时间后,扣除购买机器人的花费,小新最多能收集到多少金币。

输入输出格式

输入格式:

第一行 3 个正整数,n,m,p,意义如题目所述。

接下来的 n 行,每行有 m 个正整数,每两个整数之间用一个空格隔开,其中第 i 行描

述了 i 号马路上每个单位时间内出现的金币数量(1≤金币数量≤100),即第 i 行的第 j(1≤j≤m)个数表示第 j 个单位时间内 i 号马路上出现的金币数量。

最后一行,有 n 个整数,每两个整数之间用一个空格隔开,其中第 i 个数表示在 i 号机器人工厂购买机器人需要花费的金币数量(1≤金币数量≤100)。

输出格式:

共一行,包含 1 个整数,表示在 m 个单位时间内,扣除购买机器人

花费的金币之后,小新最多能收集到多少金币。

输入输出样例

输入样例#1:

2 3 2
1 2 3
2 3 4
1 2
输出样例#1:

5

说明

【数据范围】

对于 40%的数据,2≤n≤40,1≤m≤40。

对于 90%的数据,2≤n≤200,1≤m≤200。

对于 100%的数据,2≤n≤1000,1≤m≤1000,1≤p≤m。

NOIP 2009 普及组 第四题

/*
考试的时候一看题目就是DP,可惜时间不够了,打了一个裸的暴力,良心分10分
正解:对于当前状态,考虑买机器人的时间,并不断累加这次买机器人赚的金钱
*/
#include<cstdio>
#include<iostream>
#define M 1010
using namespace std;
int mon[M][M],w[M],f[M],n,m,p;
int read()
{
char c=getchar();int num=,flag=;
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
int main()
{
n=read();m=read();p=read();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
mon[i][j]=read();
for(int i=;i<=n;i++)
w[i]=read();
for(int i=;i<=m;i++)
for(int j=;j<=n;j++)//枚举当前的地点、时间
{
int r=j-,vi=;
if(!r)r=n;vi+=mon[r][i];
for(int k=;k<=p;k++)//枚举买机器人的时间
{
if(i-k<)continue;
f[i]=max(f[i],f[i-k]-w[r]+vi);
if(r==)r=n;else r--;
vi+=mon[r][i-k];//累计这次买机器人赚的金钱
}
}
printf("%d",f[m]);
return ;
}

道路游戏(洛谷 P1070)的更多相关文章

  1. 【题解】洛谷P1070 道路游戏(线性DP)

    次元传送门:洛谷P1070 思路 一开始以为要用什么玄学优化 没想到O3就可以过了 我们只需要设f[i]为到时间i时的最多金币 需要倒着推回去 即当前值可以从某个点来 那么状态转移方程为: f[i]= ...

  2. 洛谷 P1070 道路游戏 解题报告

    P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有\(n\)个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依 ...

  3. 洛谷P1070 道路游戏

    P1070 道路游戏 题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 n 个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将 ...

  4. 洛谷 P1070 道路游戏 DP

    P1070 道路游戏 题意: 有一个环,环上有n个工厂,每个工厂可以生产价格为x的零钱收割机器人,每个机器人在购买后可以沿着环最多走p条边,一秒走一条,每条边不同时间上出现的金币是不同的,问如何安排购 ...

  5. P4554 小明的游戏 (洛谷) 双端队列BFS

    最近没有更新博客,全是因为英语,英语太难了QWQ 洛谷春令营的作业我也不会(我是弱鸡),随机跳了2个题,难度不高,还是讲讲吧,学学新算法也好(可以拿来水博客) 第一题就是这个小明的游戏 小明最近喜欢玩 ...

  6. NOIP2012 Day1 T2国王游戏 洛谷P1080

    第一篇博客啊…… 由于我太弱了,还要去补不全的知识点准备参加人生第一次NOIp,所以第一篇博客就简短一点好了(偷懒就直说吧……) 洛谷P1080传送门 题意概括: 有N对数ai和bi,以及两个数a0和 ...

  7. 洛谷P1070 道路游戏(dp+优先队列优化)

    题目链接:传送门 题目大意: 有N条相连的环形道路.在1-M的时间内每条路上都会出现不同数量的金币(j时刻i工厂出现的金币数量为val[i][j]).每条路的起点处都有一个工厂,总共N个. 可以从任意 ...

  8. 洛谷 P1070 道路游戏(noip 2009 普及组 第四题)

    题目描述 小新正在玩一个简单的电脑游戏. 游戏中有一条环形马路,马路上有 nn个机器人工厂,两个相邻机器人工厂之间由一小段马路连接.小新以某个机器人工厂为起点,按顺时针顺序依次将这 nn个机器人工厂编 ...

  9. 【洛谷 P1070】道路游戏 (DP)

    题目链接 这题还是很好想的,看到\(90%\)的数据点时,我就知道要用\(n^3\)的算法(最后10分就算了吧) 然后,数据水,直接暴力\(n^3\)卡过了. 显然是道DP. 设\(f[i]\)表示第 ...

随机推荐

  1. 获取一段HTML文本中的第一张图片与截取内容摘要

    有时候我们获得到的数据是一段HTML文本,也许这段文本里面有许多图片,需要截取一张作为标题图片,这时就可以用到下面这个方法获取到第一张图片: #region 获取第一张图片 /// <summa ...

  2. Castle.net

    using System; using System.Collections.Generic; using System.Linq;using System.Text;using Castle.Act ...

  3. 23中java设计模式(1)-- 策略模式

    近来不太忙,就打算抽空看下源码补充一下知识,当我看了之后我发现看源码的关键是要弄清楚类之家的关系以及为何要这样的关系,否则如果只看具体的代码那不如去学习会儿算法. 于是就打算从设计模式入手,边学习边记 ...

  4. 【转】深入理解Android中的SharedPreferences

    SharedPreferences作为Android中数据存储方式的一种,我们经常会用到,它适合用来保存那些少量的数据,特别是键值对数据,比如配置信息,登录信息等.不过要想做到正确使用SharedPr ...

  5. 设计 REST API 的13个最佳实践

    写在前面 之所以翻译这篇文章,是因为自从成为一名前端码农之后,调接口这件事情就成为了家常便饭,并且,还伴随着无数的争论与无奈.编写友好的 restful api 不论对于你的同事,还是将来作为第三方服 ...

  6. 如何查看安装的java是32位的,还是64位的

    命令 java -d32 -version 或者 java -d64 -version

  7. 初试springWebMVC

    最近在尝试配置SpringMVC,发现各种坑. 首先遇到了这个问题. 'component-scan' and its parser class [org.springframework.contex ...

  8. 两个已排序数组的合并-C语言

    最近在纸上写一个已排序数组的合并时,花了超过预期的时间.仔细想想,这种要放到毕业找工作那会两下就出来了,原因还在于工作后对基础没有重视,疏于练习. 说开一点,现在搜索引擎的发达确实给问题的解决带来了便 ...

  9. CATransaction 知识

    CATransaction 事务类,可以对多个layer的属性同时进行修改.它分隐式事务,和显式事务. 区分隐式动画和隐式事务:隐式动画通过隐式事务实现动画 . 区分显式动画和显式事务:显式动画有多种 ...

  10. Linux php安装zip扩展

    Linux php安装zip扩展 2018.07.22 22:40 1165浏览   #wget http://pecl.php.net/get/zip-1.12.4.tgz #tar zxfv zi ...