BZOJ 2561: 最小生成树【最小割/最大流】
Description
给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?
Input
第一行包含用空格隔开的两个整数,分别为N和M;
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。
Output
输出一行一个整数表示最少需要删掉的边的数量。
Sample Input
3 2
3 2 1
1 2 3
1 2 2
Sample Output
1
HINT
对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;
对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;
对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。
Source
思路:首先白书中有这么一个命题:如果在图中存在一个环,使得一条边为环中的最大值,那么这条最大值的边显然不可能是MST中的边,于是猜测了一个相似的命题:如果不存在一个环使得这个边为最大值,那么一定存在一个MST使得这条边为MST中的边
然后仔细想想这个命题好像是有问题的,于是往kruscal方面考虑,如果将边排序了以后从小到大加,则加边过程中u到v显然不能联通,不然就得删边,在看了解题报告后证实了这个想法,于是对于一条边一定存在一个MST使得这条边为MST中的边的充要条件为比这条边小的边一定不能和这条边成环,于是结果就很显然了
#include <stdio.h>
#include <iostream>
#include<queue>
#include <string.h>
#include <algorithm>
#define maxn 1000005
#define maxm 1000005
#define inf 0x3f3f3f3f
int head[maxn],next[maxn],point[maxn],flow[maxn];
int ans=0,now=0,dist[maxn],que[maxn];
using namespace std;
struct T
{
int x;int y;int v;
}a[maxn];
inline bool operator <(T a,T b){return a.v<b.v;}
void add(int x,int y,int v)
{
next[++now]=head[x];
head[x]=now;
point[now]=y;
flow[now]=v;
next[++now]=head[y];
head[y]=now;
point[now]=x;
flow[now]=0;
}
int bfs(int s,int t)
{
memset(dist,-1,sizeof(dist));
dist[s]=0;
int l=0,r=0;
que[++r]=s;
while(l<r)
{
int u=que[++l];
for(int i=head[u];i;i=next[i])
{
if(dist[point[i]]==-1&&flow[i])
{
int k=point[i];
dist[k]=dist[u]+1;
que[++r]=k;
}
}
}
return dist[t]!=-1;
}
int dfs(int s,int d,int t)
{
if(s==t)return d;
int res=0;
for(int i=head[s];i&&res<d;i=next[i])
{
int u=point[i];
if(flow[i]>0 &&dist[u]==dist[s]+1)
{
int dd=dfs(u,min(d-res,flow[i]),t);
if(dd>0)
{
flow[i]-=dd;
flow[((i-1)^1)+1]+=dd;
res+=dd;
}
}
}
if(res==0)dist[s]=-1;
return res;
}
int main()
{
int n,m,s,t,l;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].v);
scanf("%d%d%d",&s,&t,&l);
sort(a+1,a+1+m);
for(int i=1;i<=m;i++)
{
if(a[i].v>l)
{
add(a[i].x,a[i].y,1);
add(a[i].y,a[i].x,1);
}
}
while(bfs(s,t))
{
ans+=dfs(s,inf,t);
}
now=0;
memset(head,0,sizeof(head));
for(int i=1;i<=m;i++)
{
if(a[i].v<l)
{
add(a[i].x,a[i].y,1);
add(a[i].y,a[i].x,1);
}
}
while(bfs(s,t))
{
ans+=dfs(s,inf,t);
}
printf("%d\n",ans);
return 0;
}
BZOJ 2561: 最小生成树【最小割/最大流】的更多相关文章
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- BZOJ 2521 最小生成树(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...
- hdu4289 最小割最大流 (拆点最大流)
最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...
- 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1685 Solved: 724[Submit] ...
- BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
- BZOJ1001:狼抓兔子(最小割最大流+vector模板)
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...
- HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)
题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory L ...
- 最小割最大流定理&残量网络的性质
最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T ...
- Destroying The Graph 最小点权集--最小割--最大流
Destroying The Graph 构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), ...
随机推荐
- C#将excel数据按照需求导入Sql server遇到的问题(参考而已)
1.千万不要使用永中表格(WPS没用过,这里只是个人观点,不是说永中表格的) 我在公司得到的任务是将excel数据按照需求导入数据库总共主表大概3张,所以有点复杂(列子用的简单表,公司东西还是不要放出 ...
- placeholder字体样式及兼容
样式修改css::-webkit-input-placeholder { /* WebKit browsers */ color: #fff!important;}:-moz-placeholder ...
- 《Python基础教程》 读书笔记 第六章 抽象 函数 参数
6.1创建函数 函数是可以调用(可能包含参数,也就是放在圆括号中的值),它执行某种行为并且返回一个值.一般来说,内建的callable函数可以用来判断函数是否可调用: >>> x=1 ...
- apache配置多域名
环境:mac,其他环境也可做参考 hosts配置 eg:sudo vim /etc/hosts 127.0.0.1 www.testphalcon.com apache配置 找到apache对应安装目 ...
- 用JS检测页面加载的不同阶段状态
这可以通过用document.onreadystatechange的方法来监听状态改变, 然后用document.readyState == “complete”判断是否加载完成. 可以采用2个div ...
- android 代码中及xml中设置透明
在布局文件的属性中,比如要设置一个LineaerLayout的背景为灰色透明.首先查RGB颜色表灰色是:#9E9E9E,AA代表透明,(透明度从00到FF,00表示完全透明),所以,设置其属性:and ...
- java异常处理中的细节
首先看一段代码 public class Test{ public static String output=""; public static void foo(int i){ ...
- docker 新手入门(docker的安装)
docker的安装(在centos7下面) 1. 卸载在liunx下,先看有没有安装docker,docker version,如果有的话,可以先移除 yum remove ........ 可以使用 ...
- 看Spring Data如何简化数据操作
Spring Data 概述 Spring Data 用于简化数据库访问,支持NoSQL 和 关系数据存储,其主要目标是使数据库的访问变得方便快捷. SpringData 项目所支持 NoSQL 存储 ...
- CAD交互绘制文字(网页版)
在CAD设计时,需要绘制文字,用户可以设置设置绘制文字的高度等属性. 主要用到函数说明: _DMxDrawX::DrawText 绘制一个单行文字.详细说明如下: 参数 说明 DOUBLE dPosX ...