题目描述

After Farmer Don took up Frisbee, Farmer John wanted to join in the fun. He wants to form a Frisbee team from his N cows (1 <= N <= 2,000) conveniently numbered 1..N. The cows have been practicing flipping the discs around, and each cow i has a rating R_i (1 <= R_i <= 100,000) denoting her skill playing Frisbee. FJ can form a team by choosing one or more of his cows.

However, because FJ needs to be very selective when forming Frisbee teams, he has added an additional constraint. Since his favorite number is F (1 <= F <= 1,000), he will only accept a team if the sum of the ratings of each cow in the team is exactly divisible by F.

Help FJ find out how many different teams he can choose. Since this number can be very large, output the answer modulo 100,000,000.

Note: about 50% of the test data will have N <= 19.

农夫顿因开始玩飞盘之后,约翰也打算让奶牛们享受飞盘的乐趣.他要组建一只奶牛飞盘

队.他的N(1≤N≤2000)只奶牛,每只部有一个飞盘水准指数Ri(1≤Ri≤100000).约翰要选出1只或多于1只奶牛来参加他的飞盘队.由于约翰的幸运数字是F(1≤F≤1000),他希望所有奶牛的飞盘水准指数之和是幸运数字的倍数.

帮约翰算算一共有多少种组队方式.

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and F

  • Lines 2..N+1: Line i+1 contains a single integer: R_i

输出格式:

  • Line 1: A single integer representing the number of teams FJ can choose, modulo 100,000,000.

输入输出样例

输入样例#1:

4 5
1
2
8
2
输出样例#1:

3

说明

FJ has four cows whose ratings are 1, 2, 8, and 2. He will only accept a team whose rating sum is a multiple of 5.

FJ can pair the 8 and either of the 2's (8 + 2 = 10), or he can use both 2's and the 1 (2 + 2 + 1 = 5).

【题目大意】

从n个数中选出几个数使他成为f的倍数的方案数。

【思路】

动态规划...

dp[i][j]表示前i个牛,选择的牛的数的和%f==j的方案数。不是很懂转移方程+r[i]不是-r[i]

【code】

#include<iostream>
#include<cstdio>
using namespace std;
#define mod 100000000
int n,f;
int r[],dp[][];
int main()
{
scanf("%d%d",&n,&f);
for(int i=;i<=n;i++)
scanf("%d",&r[i]);
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=f;j++)
{
dp[i][j]+=dp[i-][j]+dp[i-][(j+r[i])%f];
dp[i][j]%=mod;
}
printf("%d\n",dp[n][f]%mod);
return ;
}

P2946 [USACO09MAR]牛飞盘队Cow Frisbee Team的更多相关文章

  1. luogu P2946 [USACO09MAR]牛飞盘队Cow Frisbee Team

    题目背景 老唐最近迷上了飞盘,约翰想和他一起玩,于是打算从他家的N头奶牛中选出一支队伍. 每只奶牛的能力为整数,第i头奶牛的能力为R i .飞盘队的队员数量不能少于 1.大于N.一 支队伍的总能力就是 ...

  2. 牛飞盘队Cow Frisbee Team

    老唐最近迷上了飞盘,约翰想和他一起玩,于是打算从他家的N头奶牛中选出一支队伍. 每只奶牛的能力为整数,第i头奶牛的能力为R i .飞盘队的队员数量不能少于 .大于N. 一支队伍的总能力就是所有队员能力 ...

  3. USACO Cow Frisbee Team

    洛谷 P2946 [USACO09MAR]牛飞盘队Cow Frisbee Team 洛谷传送门 JDOJ 2632: USACO 2009 Mar Silver 2.Cow Frisbee Team ...

  4. BZOJ3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队

    3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 89  Solve ...

  5. 3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队

    3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 129  Solv ...

  6. BZOJ 3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 动态规划

    3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=34 ...

  7. bzoj:3400 [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队

    Description     农夫顿因开始玩飞盘之后,约翰也打算让奶牛们享受飞盘的乐趣.他要组建一只奶牛飞盘 队.他的N(1≤N≤2000)只奶牛,每只部有一个飞盘水准指数Ri(1≤Ri≤10000 ...

  8. 【BZOJ】3400: [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3400 既然是倍数我们转换成mod.. 设状态f[i][j]表示前i头牛modj的方案 那么答案显然是 ...

  9. BZOJ 3400 [Usaco2009 Mar]Cow Frisbee Team 奶牛沙盘队:dp【和为f的倍数】

    题目链接:http://begin.lydsy.com/JudgeOnline/problem.php?id=1375 题意: 给你n个数,你可以从中选任意多个,但不能不选.问你所选数字之和为f的倍数 ...

随机推荐

  1. luogu P3420 [POI2005]SKA-Piggy Banks

    题目描述 Byteazar the Dragon has NN piggy banks. Each piggy bank can either be opened with its correspon ...

  2. Java生成读取条形码和二维码图片

    原文:http://www.open-open.com/code/view/1453520722495 package zxing; import com.google.zxing.BarcodeFo ...

  3. paddle中新增layer

    Implement C++ Class The C++ class of the layer implements the initialization, forward, and backward ...

  4. vim列块操作

    一.可视模式 进入可视模式有三种方法:v,V,CTRL+V (1)按v启用可视模式,能够按单个字符选择内容,移动光标能够选择. 如: (2)按V启用可视模式,立马选中光标所在行.按单行符选择内容.移动 ...

  5. SolidEdge 工程图中如何快速将同一类元素放到同一个图层

    在图层选项卡中新建一个尺寸线图层   点击聪慧选项(把它点凹下去),然后点击任意尺寸线,弹出聪慧选取选项,点击确定,则自动选择了所有尺寸线   点击移动图元,把刚才选中的所有尺寸线都移动到这个图层即可 ...

  6. Objective-C之成魔之路【0-序章】

    郝萌主倾心贡献,尊重作者的劳动成果.请勿转载. 假设文章对您有所帮助.欢迎给作者捐赠,支持郝萌主,捐赠数额任意.重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 C语言首创 ...

  7. 《Java虚拟机原理图解》4.JVM机器指令集

    0. 前言 Java虚拟机和真实的计算机一样,执行的都是二进制的机器码:而我们将.java 源码编译成.class 文件,class文件便是Java虚拟机可以认识的二进制机器码,Java可以识别cla ...

  8. flask-本地线程-请求上下文补充

    context(上下文)是flask里面非常好的设计,使用flask需要非常理解应用上下文和请求上下文这两个概念 本地线程 本地线程(thread local)希望不同的线程对于内容的修改只在线程内部 ...

  9. C++类中static修饰的函数的使用

    //在C++中应该养成习惯:只用静态成员函数引用静态成员数据,而不引用非静态成员数据 #include <iostream>using namespace std;class st_inf ...

  10. 使用$.when()解决AJAX异步难题之:多个ajax操作进行逻辑与(and)

    上一篇文章"JQuery.deferred提供的promise解决方式",提到了javascript异步操作的3个问题,以及javascript Promise入门.如今我们看下怎 ...