题目描述可能稍有偏差,但实质上是一样的。

看下面

题目大意

题面这么长,先说说题意吧。

就是有一个操作系统,他的存储方式是树形的。其中分为文件和目录(文件夹)每一个子目录下只能存储 $K$ 个文件或目录。并且有 $K$ 个指针分别指向这 $K$ 个文件或文件夹。每一个指针都有一个访问时间 $P$。

然后每一个文件或目录都有一个访问时间,文件和目录的访问时间计算方式不相同

  • 文件:访问其所有上级目录(就是这个文件访问路径上的文件夹)的访问时间加上这个文件的指针的访问时间。
  • 文件夹:它的各级子目录下文件的个数 $\times $ 它的指针的访问时间。通俗一点就是它的子树上的文件的个数为 $x$,它的指针访问时间是 $y$ 那么它的访问时间就是 $x\times y$。这里要说一下题面描述出了锅,最起码我现在看是这样的。

现在你需要计算出给出的 $N$ 个文件的最小访问时间总和。

解题思路

我看了Vijos上的题解表示并没有看懂,于是问问机房的dalao。dalao就是dalao。

这是一道树形DP。首先要明白一个贪心策略。在同一层子目录下,如果现在的剩余空间已经无法容纳剩下的文件那么我们必然是需要在开一个文件夹进行存储的。那这个文件夹开的位置的指针访问时间越小越好。因为如果它是一个文件夹的话,它对答案的影响会随着它的子目录中文件的数量增加而成倍增加。所以要尽量的小。这就是一个贪心的策略,显然在输入的时候是需要对指针的访问时间从小到大排序的。

接下来做树形dp。先看下代码,我们一段一段的讲。

int main() {
scanf("%d%d", &n, &k);
for(int i=; i<=k; i++)
scanf("%d", &p[i]);
sort(p+, p++k);
printf("%d", dp(n, , n-));
}

排序这一部分自然是不用多说了,上面已经说过了。

再来看dp函数

inline int dp(int x, int y, int l) {
if(x == ) {
f[x][y] = p[y];
return f[x][y];
}
if(y == k) {
f[x][y] = p[y] * x * x + dp(x, , x-);
return f[x][y];
}
int tmp = k-y+;
if(tmp * l < x)
return INF;
if(f[x][y]) return f[x][y];
tmp = (x-)/tmp + ;
for(int i=tmp; i<=l; i++) {
if(i == )
f[x][y] = p[y] + dp(x-, y+, x-);
else
f[x][y] = MIN(f[x][y], dp(x-i, y+, x-i-) + dp(i, , i-) + p[y] * i * i);
}
return f[x][y];
}

$x$ 表示还剩下多少个文件没有被安排。$y$ 表示现在用到的是第 $y$ 个指针。$f[x][y]$ 表示还剩 $x$ 个文件用第 $y$ 个指针的最小的访问时间。

显然如果 $x == 1$ 的话,就直接将现在这个指针的时间给它就好了。如果 $y==k$ 的话,说明 $k$ 个指针已经用到了最后一个那肯定是要建一个文件夹。

这里的 $p[y]*x*x$ 的含义呢,是将这个文件夹的访问时间计算出来并且它之后会产生 $x$ 次影响,将这 $x$ 次影响在这里直接计算出来。

$l$ 表示层数,是最多还能伸下去安排几层。$tmp$ 那个地方是一个小剪枝。如果剩余的内存还不够将这 $x$ 个文件安排好的话就直接反回 $inf$。

往后的状态转移,如果只剩下一个需要安排的话,那就直接安排上。否则的话就开一个文件夹,把除文件夹外的剩余空间进行分配,并且往下深入一层。

附上代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = , INF = ;
int n, k, p[], f[maxn][maxn];
inline int MIN(int x, int y) {
if(!x) return y;
else return min(x, y);
}
inline int dp(int x, int y, int l) {
if(x == ) {
f[x][y] = p[y];
return f[x][y];
}
if(y == k) {
f[x][y] = p[y] * x * x + dp(x, , x-);
return f[x][y];
}
int tmp = k-y+;
if(tmp * l < x)
return INF;
if(f[x][y]) return f[x][y];
tmp = (x-)/tmp + ;
for(int i=tmp; i<=l; i++) {
if(i == )
f[x][y] = p[y] + dp(x-, y+, x-);
else
f[x][y] = MIN(f[x][y], dp(x-i, y+, x-i-) + dp(i, , i-) + p[y] * i * i);
}
return f[x][y];
}
int main() {
scanf("%d%d", &n, &k);
for(int i=; i<=k; i++)
scanf("%d", &p[i]);
sort(p+, p++k);
printf("%d", dp(n, , n-));
}

「 Luogu P2230 」X 「 Vijos 1142 」 HXOS系统的更多相关文章

  1. 「Luogu P2468 [SDOI2010]粟粟的书架」

    这道题分为两个部分 Part1 前置芝士 前缀和(后缀和,二维前缀和):可以预处理一下数据. 二分查找:可以在较短的时间内找出答案. 具体做法 可以发现\(R,C\)不大,只有\(200\),于是可以 ...

  2. 「Luogu P3078 [USACO13MAR]扑克牌型Poker Hands」

    本题有\(O(N)\)的优秀做法,但是因为在考场上不一定能想到,就来分享一种\(O(N\log_2N)\)的做法.虽然有点慢,但是可以过. 前置芝士 线段树:提高组及以上必备内容,不会的同学可以学习一 ...

  3. 「Luogu P3820 小D的地下温泉」

    这道题的考点比较多. 前置芝士 BFS(DFS),这两种算法在这道题中并没有什么特别突出的地方,基本就是自己看心情写(本文以DFS为准,所以我心情是好是坏呢?) 连通块,可以将每一个温泉看作一个连通块 ...

  4. 「Luogu P2253 好一个一中腰鼓!」

    就这道题的理论难度来说绿题是有点低了,但是这道题的实际难度来看,顶多黄题,所以建议加强数据或出数据升级版. 前置芝士 线段树:具体可以看我的另一篇文章. 具体做法 暴力的方法想必都会,所以来讲一下正解 ...

  5. Git 执行 「fork 出来的仓库」和「最新版本的原仓库」内容同步更新

    当我们在 GitHub 上 fork 出一个仓库后,如果原仓库更新了,此时怎样才能保证我们 fork 出来的仓库和原仓库内容一致呢?我们一般关注的是仓库的 master(主干分支)的内容,通过以下步骤 ...

  6. FileUpload控件「批次上传 / 多档案同时上传」的范例--以「流水号」产生「变量名称」

    原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/19/multiple_fileupload_asp_net_20130819. ...

  7. Java的参数传递是「值传递」还是「引用传递」?

    关于Java传参时是引用传递还是值传递,一直是一个讨论比较多的话题. 有人说Java中只有值传递,也有人说值传递和引用传递都是存在的,比较容易让人产生疑问. 关于值传递和引用传递其实需要分情况看待. ...

  8. Linux 小知识翻译 - 「Unix」和「兼容Unix的OS」

    经常有人会问「Linux和Unix有什么区别?」,「Linux就是Unix吗?」. 回答一般都是「Linux是仿照Unix而开发的OS」,「Linux和Unix相似但不是一种OS」之类的. 关于「Li ...

  9. Linux 小知识翻译 - 「Linux」和「发行版」之间的关系

    「Linux」本来指的仅仅是内核.5年之前大多都是这么认为的,但是最近不这么说了. 最近一般都说「Linux」是个 OS,这里的OS,不仅仅是内核,而是指电脑的整体环境(除了内核,还包括一些外围的软件 ...

随机推荐

  1. Oracle创建表语句(Create table)语法详解及示例、、 C# 调用Oracle 存储过程返回数据集 实例

    Oracle创建表语句(Create table)语法详解及示例 2010-06-28 13:59:13|  分类: Oracle PL/SQL|字号 订阅 创建表(Create table)语法详解 ...

  2. 打印二叉树中距离根节点为k的所有节点

    package tree; public class Printnodesatkdistancefromroot { /** * Given a root of a tree, and an inte ...

  3. python-----截取xml文件画框的图片并保存

    from __future__ import division import os from PIL import Image import xml.dom.minidom import numpy ...

  4. LA3704

    https://vjudge.net/problem/UVALive-3704 参考:http://www.cnblogs.com/iwtwiioi/p/3946211.html 循环矩阵... 我们 ...

  5. 搞笑代码注释,佛祖保佑 永无BUG

    佛祖保佑 永无BUG 上传图片即可生成字符画,效果还不错, https://www.fontke.com/tool/image2ascii/ 神注释大全 https://github.com/Blan ...

  6. VBNET AUTOCAD NETAPI 让插件随autocad启动

    定义一个函数,随AutoCAD 启动加载当前程序集到autocad,涉及到写入注册表,注意这是在autocad内部加载dll之后处理的方法.... 写入HKLM表示所有登录的用户都会受影响(autoc ...

  7. Akka源码分析-Akka-Streams-概念入门

    今天我们来讲解akka-streams,这应该算akka框架下实现的一个很高级的工具.之前在学习akka streams的时候,我是觉得云里雾里的,感觉非常复杂,而且又难学,不过随着对akka源码的深 ...

  8. moiezen

    这题是个随机化+二分裸题--------考场上居然没有想出来--想的出来就怪了吧 我们随机一下增加x的顺序,然后进行二分之前,看看这个x加完之后能不能更新答案,不能就不二分了.具题解所说,这个复杂度是 ...

  9. 树形DP UVA 1292 Strategic game

    题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...

  10. Troubleshooting Guide for ORA-12541 TNS: No Listener

    Server side checks (not platform specific): 1)  Check the result on the server using tnsping to the ...