M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。

收起

输入

第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000)

输出

输出走法的数量。

输入样例

2 3

输出样例

3

思路:这道题也是较简单的,由于机器人只能向下或者向右走,所以在最后一步即右下时,它有两种途径,即从它左边或者上边到达的。

另dp[i][j]表示走到(i,j)点的路径数目,可以得到递推式:dp[i][j]=dp[i-1][j]+dp[i][j-1];

另外要处理一下边界,另第一行和第一列都为1,其实不难理解,边界的路径数目都为1。

#include<cstdio>
#include <iostream>
using namespace std;
const int mod=1e9+7;
const int maxn=1005;
int dp[maxn][maxn];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i)
dp[i][0]=1;
for(int j=0;j<m;++j)
dp[0][j]=1;
for(int i=1;i<n;++i)
for(int j=1;j<m;++j)
dp[i][j]=(dp[i-1][j]+dp[i][j-1])%mod;
printf("%d\n",dp[n-1][m-1]);
return 0;
}

51nod 1118 机器人走方格【dp】的更多相关文章

  1. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  2. (DP)51NOD 1118 机器人走方格

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.( ...

  3. 51nod 1118 机器人走方格

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起   输入 第1行,2个数M,N,中间用空格隔开 ...

  4. 51Nod 1118 机器人走方格--求逆元

    (x/y) %mod =x*(y^(mod-2))%mod; 在算x,y的时候可以一直mod 来缩小 y^(mod-2)显然是个快速幂 #include <iostream> #inclu ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  7. 51Nod——N1118 机器人走方格

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

  8. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  9. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

随机推荐

  1. document.body.className = document.body.className.replace("siteorigin-panels-before-js","");

    document.body.className = document.body.className.replace("siteorigin-panels-before-js",&q ...

  2. oracle 存储过程调用 执行

    oracle 存储过程调用 博客分类: 数据库相关   oracle存储过程 2011年02月11日 星期五 14:47 SQL中调用存储过程语句: call procedure_name(); 调用 ...

  3. hdu - 5023 - A Corrupt Mayor's Performance Art(线段树)

    题目原文废话太多太多太多,我就不copyandpaste到这里啦..发个链接吧题目 题目意思就是:P  l  r  c  将区间 [l ,r]上的颜色变成c    Q  l r 就是打印出区间[l,r ...

  4. 【Codevs 3115】高精度练习之减法

    http://codevs.cn/problem/3115/ 板子题~ // <H.cpp> - Sun Oct 9 12:58:23 2016 // This file is made ...

  5. 【OI新闻】2016.10.09

    号外: [头条]今天OI神犇光勋和原子城po ke,Happy Birthday!

  6. BSGS算法及拓展

    https://www.zybuluo.com/ysner/note/1299836 定义 一种用来求解高次同余方程的算法. 一般问题形式:求使得\(y^x\equiv z(mod\ p)\)的最小非 ...

  7. linux下的C语言开发 GDB的例子

    在很多人的眼里,C语言和linux常常是分不开的.这其中的原因很多,其中最重要的一部分我认为是linux本身就是C语言的杰出作品.当然,linux操作系统本身对C语言的支持也是相当到位的.作为一个真正 ...

  8. bzoj1776

    点分治/贪心 对于点分治的理解不够深刻...点分治能统计树上每个点对的信息,那么这里就是统计同种颜色点对之间的最大距离,自然可以用点分 然后点分,每次统计最大距离,但是略微卡常... 还有一种贪心的方 ...

  9. Kafka详解与总结(七)-Kafka producer拦截器(interceptor)

    1. 拦截器原理 Producer拦截器(interceptor)是在Kafka 0.10版本被引入的,主要用于实现clients端的定制化控制逻辑. 对于producer而言,interceptor ...

  10. 题解报告:poj 3468 A Simple Problem with Integers(线段树区间修改+lazy懒标记or树状数组)

    Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...