M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。

收起

输入

第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000)

输出

输出走法的数量。

输入样例

2 3

输出样例

3

思路:这道题也是较简单的,由于机器人只能向下或者向右走,所以在最后一步即右下时,它有两种途径,即从它左边或者上边到达的。

另dp[i][j]表示走到(i,j)点的路径数目,可以得到递推式:dp[i][j]=dp[i-1][j]+dp[i][j-1];

另外要处理一下边界,另第一行和第一列都为1,其实不难理解,边界的路径数目都为1。

#include<cstdio>
#include <iostream>
using namespace std;
const int mod=1e9+7;
const int maxn=1005;
int dp[maxn][maxn];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<n;++i)
dp[i][0]=1;
for(int j=0;j<m;++j)
dp[0][j]=1;
for(int i=1;i<n;++i)
for(int j=1;j<m;++j)
dp[i][j]=(dp[i-1][j]+dp[i][j-1])%mod;
printf("%d\n",dp[n-1][m-1]);
return 0;
}

51nod 1118 机器人走方格【dp】的更多相关文章

  1. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  2. (DP)51NOD 1118 机器人走方格

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. Input 第1行,2个数M,N,中间用空格隔开.( ...

  3. 51nod 1118 机器人走方格

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果. 收起   输入 第1行,2个数M,N,中间用空格隔开 ...

  4. 51Nod 1118 机器人走方格--求逆元

    (x/y) %mod =x*(y^(mod-2))%mod; 在算x,y的时候可以一直mod 来缩小 y^(mod-2)显然是个快速幂 #include <iostream> #inclu ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  7. 51Nod——N1118 机器人走方格

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

  8. 51nod 1120 机器人走方格 V3 卡特兰数 lucas定理

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走.并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 100 ...

  9. 51nod 1120 机器人走方格 V3

    N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只能向右或向下走. 并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法? 由于方法数量可能很大,只需要输出Mod 1 ...

随机推荐

  1. 经典的printk 写法

    经典的printk 写法: printk("[lynn--%s@%d]: addr:0x%x  \n",__func__,__LINE__,obj->client->a ...

  2. 推理集 —— death

    事故: 自杀: 他杀: 1. 跳楼 头向下死得比较快,没那么痛苦. 脚向下,不会立刻死亡,痛苦至极.死亡原因可能不是跳楼,而是失血过多而死 扑下去, 同头向下. 仰着跌下去,同头向下.. 跳楼最好头先 ...

  3. Oracle高水位线

    Oracle高水位线 https://blog.csdn.net/jx_jy/article/details/50607790 Oracle高水位线的概念 Oracle里面的对象放到存储级别都称为se ...

  4. [Jsoi2015]字符串树

    https://www.zybuluo.com/ysner/note/1298148 题面 字符串树本质上还是一棵树,即\(N\)个节点\(N-1\)条边的连通无向无环图,节点 从\(1\)到\(N\ ...

  5. xargs 主要用于不支持管道的shell命令*****

    变量置换,主要用于不支持管道的shell命令,如:rm.sed等,但有些命令需要占位符“{}”需要注意.比如:删除文件- ls|xargs -i rm -rf {} 文件改名-   ls|xargs ...

  6. swift中使用GCDMulticastDelegate

    在开源库XMPPFramework中提供了一个GCDMulticastDelegate类,使用它可以为一个对象添加多个被委托的对象,以前用oc编写的工程引入了这个类,使用起来十分方便.最近由于换了工作 ...

  7. bzoj2132

    最小割 套路最小割... 盗一波图 来自GXZ神犇 对于这样的图,我们要么割ai,bj,要么割bi,aj,要么割ai,ci+cj,aj,要么割bi,ci+cj,bj,然后这样建图跑最小割就行了 但这不 ...

  8. E20180109-E

    auxilary  adj. 辅助的; 备用的,补充的; 附加的; 副的;               n. 助动词; 辅助者,辅助人员; 附属机构,附属团体; 辅助设备; 

  9. 01-vue指令

    什么是Vue.js Vue.js 是目前最火的一个前端框架,React是最流行的一个前端框架(React除了开发网站,还可以开发手机App, Vue语法也是可以用于进行手机App开发的,需要借助于We ...

  10. 【SPOJ-GCDEX】GCD Extreme(欧拉函数)

    题目: SPOJ-GCDEX (洛谷 Remote Judge) 分析: 求: \[\sum_{i=1}^{n}\sum_{j=i+1}^{n}gcd(i,j)\] 这道题给同届新生讲过,由于种种原因 ...