1. Adaboost类库概述

    scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归。

    AdaBoostClassifier使用了两种Adaboost分类算法的实现,SAMME和SAMME.R。而AdaBoostRegressor则使用了我们原理篇里讲到的Adaboost回归算法的实现,即Adaboost.R2。

    当我们对Adaboost调参时,主要要对两部分内容进行调参,第一部分是对我们的Adaboost的框架进行调参, 第二部分是对我们选择的弱分类器进行调参。两者相辅相成。下面就对Adaboost的两个类:AdaBoostClassifier和AdaBoostRegressor从这两部分做一个介绍。

2. AdaBoostClassifier和AdaBoostRegressor框架参数

    我们首先来看看AdaBoostClassifier和AdaBoostRegressor框架参数。两者大部分框架参数相同,下面我们一起讨论这些参数,两个类如果有不同点我们会指出。

    1)base_estimator:AdaBoostClassifier和AdaBoostRegressor都有,即我们的弱分类学习器或者弱回归学习器。理论上可以选择任何一个分类或者回归学习器,不过需要支持样本权重。我们常用的一般是CART决策树或者神经网络MLP。默认是决策树,即AdaBoostClassifier默认使用CART分类树DecisionTreeClassifier,而AdaBoostRegressor默认使用CART回归树DecisionTreeRegressor。另外有一个要注意的点是,如果我们选择的AdaBoostClassifier算法是SAMME.R,则我们的弱分类学习器还需要支持概率预测,也就是在scikit-learn中弱分类学习器对应的预测方法除了predict还需要有predict_proba。

    2)algorithm:这个参数只有AdaBoostClassifier有。主要原因是scikit-learn实现了两种Adaboost分类算法,SAMME和SAMME.R。两者的主要区别是弱学习器权重的度量,SAMME使用了和我们的原理篇里二元分类Adaboost算法的扩展,即用对样本集分类效果作为弱学习器权重,而SAMME.R使用了对样本集分类的预测概率大小来作为弱学习器权重。由于SAMME.R使用了概率度量的连续值,迭代一般比SAMME快,因此AdaBoostClassifier的默认算法algorithm的值也是SAMME.R。我们一般使用默认的SAMME.R就够了,但是要注意的是使用了SAMME.R, 则弱分类学习器参数base_estimator必须限制使用支持概率预测的分类器。SAMME算法则没有这个限制。

    3)loss:这个参数只有AdaBoostRegressor有,Adaboost.R2算法需要用到。有线性‘linear’, 平方‘square’和指数 ‘exponential’三种选择, 默认是线性,一般使用线性就足够了,除非你怀疑这个参数导致拟合程度不好。这个值的意义在原理篇我们也讲到了,它对应了我们对第k个弱分类器的中第i个样本的误差的处理,即:如果是线性误差,则;如果是平方误差,则,如果是指数误差,则,为训练集上的最大误差

    4) n_estimators: AdaBoostClassifier和AdaBoostRegressor都有,就是我们的弱学习器的最大迭代次数,或者说最大的弱学习器的个数。一般来说n_estimators太小,容易欠拟合,n_estimators太大,又容易过拟合,一般选择一个适中的数值。默认是50。在实际调参的过程中,我们常常将n_estimators和下面介绍的参数learning_rate一起考虑。

    5) learning_rate:  AdaBoostClassifier和AdaBoostRegressor都有,即每个弱学习器的权重缩减系数,在原理篇的正则化章节我们也讲到了,加上了正则化项,我们的强学习器的迭代公式为。的取值范围为。对于同样的训练集拟合效果,较小的意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。所以这两个参数n_estimators和learning_rate要一起调参。一般来说,可以从一个小一点的开始调参,默认是1。

3. AdaBoostClassifier和AdaBoostRegressor弱学习器参数

    这里我们再讨论下AdaBoostClassifier和AdaBoostRegressor弱学习器参数,由于使用不同的弱学习器,则对应的弱学习器参数各不相同。这里我们仅仅讨论默认的决策树弱学习器的参数。即CART分类树DecisionTreeClassifier和CART回归树DecisionTreeRegressor。

    DecisionTreeClassifier和DecisionTreeRegressor的参数基本类似,在scikit-learn决策树算法类库使用小结这篇文章中我们对这两个类的参数做了详细的解释。这里我们只拿出调参数时需要尤其注意的最重要几个的参数再拿出来说一遍:

    1) 划分时考虑的最大特征数max_features: 可以使用很多种类型的值,默认是"None",意味着划分时考虑所有的特征数;如果是"log2"意味着划分时最多考虑个特征;如果是"sqrt"或者"auto"意味着划分时最多考虑个特征。如果是整数,代表考虑的特征绝对数。如果是浮点数,代表考虑特征百分比,即考虑(百分比xN)取整后的特征数。其中N为样本总特征数。一般来说,如果样本特征数不多,比如小于50,我们用默认的"None"就可以了,如果特征数非常多,我们可以灵活使用刚才描述的其他取值来控制划分时考虑的最大特征数,以控制决策树的生成时间。

    2) 决策树最大深max_depth: 默认可以不输入,如果不输入的话,决策树在建立子树的时候不会限制子树的深度。一般来说,数据少或者特征少的时候可以不管这个值。如果模型样本量多,特征也多的情况下,推荐限制这个最大深度,具体的取值取决于数据的分布。常用的可以取值10-100之间。

    3) 内部节点再划分所需最小样本数min_samples_split: 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分。 默认是2.如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。

    4) 叶子节点最少样本数min_samples_leaf: 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝。 默认是1,可以输入最少的样本数的整数,或者最少样本数占样本总数的百分比。如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。

    5)叶子节点最小的样本权重和min_weight_fraction_leaf:这个值限制了叶子节点所有样本权重和的最小值,如果小于这个值,则会和兄弟节点一起被剪枝。 默认是0,就是不考虑权重问题。一般来说,如果我们有较多样本有缺失值,或者分类树样本的分布类别偏差很大,就会引入样本权重,这时我们就要注意这个值了。

    6) 最大叶子节点数max_leaf_nodes: 通过限制最大叶子节点数,可以防止过拟合,默认是"None”,即不限制最大的叶子节点数。如果加了限制,算法会建立在最大叶子节点数内最优的决策树。如果特征不多,可以不考虑这个值,但是如果特征分成多的话,可以加以限制,具体的值可以通过交叉验证得到。

Python sklearn Adaboost的更多相关文章

  1. Python —— sklearn.feature_selection模块

    Python —— sklearn.feature_selection模块 sklearn.feature_selection模块的作用是feature selection,而不是feature ex ...

  2. Python: sklearn库——数据预处理

    Python: sklearn库 —— 数据预处理 数据集转换之预处理数据:      将输入的数据转化成机器学习算法可以使用的数据.包含特征提取和标准化.      原因:数据集的标准化(服从均值为 ...

  3. Python Sklearn.metrics 简介及应用示例

    Python Sklearn.metrics 简介及应用示例 利用Python进行各种机器学习算法的实现时,经常会用到sklearn(scikit-learn)这个模块/库. 无论利用机器学习算法进行 ...

  4. 用python+sklearn(机器学习)实现天气预报数据 模型和使用

    用python+sklearn机器学习实现天气预报 模型和使用 项目地址 系列教程 0.前言 1.建立模型 a.准备 引入所需要的头文件 选择模型 选择评估方法 获取数据集 b.建立模型 c.获取模型 ...

  5. 用python+sklearn(机器学习)实现天气预报数据 数据

    用python+sklearn机器学习实现天气预报 数据 项目地址 系列教程 勘误表 0.前言 1.爬虫 a.确认要被爬取的网页网址 b.爬虫部分 c.网页内容匹配取出部分 d.写入csv文件格式化 ...

  6. 用python+sklearn(机器学习)实现天气预报 准备

    用python+sklearn机器学习实现天气预报 准备 项目地址 系列教程 0.流程介绍 1. 环境搭建 a.python b.涉及到的机器学习相关库 sklearn panda seaborn j ...

  7. python+sklearn+kaggle机器学习

    python+sklearn+kaggle机器学习 系列教程 0.kaggle 1. 初级线性回归模型机器学习过程 a. 提取数据 b.数据预处理 c.训练模型 d.根据数据预测 e.验证 今天是10 ...

  8. python sklearn模型的保存

    使用python的机器学习包sklearn的时候,如果训练集是固定的,我们往往想要将一次训练的模型结果保存起来,以便下一次使用,这样能够避免每次运行时都要重新训练模型时的麻烦. 在python里面,有 ...

  9. 数据正规化 (data normalization) 的原理及实现 (Python sklearn)

    原理 数据正规化(data normalization)是将数据的每个样本(向量)变换为单位范数的向量,各样本之间是相互独立的.其实际上,是对向量中的每个分量值除以正规化因子.常用的正规化因子有 L1 ...

随机推荐

  1. 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu

    https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...

  2. 【ZJOI2017 Round1练习】D2T1 river(二分图)

    题意: 思路:这道题并没有官方题解 没有羊驼在所有三元组中出现就是NO 现在考虑不少于1只的情况 删去其中一只,我们得到了两组点和一些边 我们只要判断这是否为一张二分图,使用暴力染色的方法就有60分了 ...

  3. msp430项目编程17

    msp430中项目---红外遥控系统 1.定时器工作原理 2.电路原理说明 3.代码(显示部分) 4.代码(功能实现) 5.项目总结 msp430项目编程 msp430入门学习

  4. Free Web Application Firewall相关资料

    http://www.freewaf.org/solution/#1 http://baike.soso.com/v60659982.htm

  5. python(5)- 基础数据类型

    一 int 数字类型 #abs(x) 返回数字的绝对值,如abs(-10) 返回 10 # ceil(x) 返回数字的上入整数,如math.ceil(4.1) 返回 5 # cmp(x, y) 如果 ...

  6. bit manipulation

    WIKI Bit manipulation is the act of algorithmically manipulating bits or other pieces of data shorte ...

  7. 导师高茂源:用CODEX创新方法破解西方创新“秘密”(转)

    高茂源,“CODEX创新体系”的创立者,精一学社的创业导师.“CODEX”是Copy.Optimize.Dimension.Ecosystem.Extra五个单词的缩写,该体系精炼了现在世界上流行的创 ...

  8. SQL SERVER 2012 第四章 连接 JOIN の OUTER JOIN,完全连接FULL JOIN,交叉连接CROSS JOIN

    SELECT <SELECT LIST> FROM <the table you want to be the "LEFT" table> <LEFT ...

  9. 代码svn下载到本地后,关于数据库问题

    代码svn下载到本地后,关于数据库问题 1.那我本地还用搭建相应的数据库么?答案:当然不用啦,本地系统里已经配置好了数据库的网络地址了,端口号,密码啥的.即使你代码运行在本地,依然可以将数据传输到服务 ...

  10. IOS开发 ios7适配

    ios7控制器试图默认为全屏显示,导航栏的不同设置会产生不同的效果. 首先判断系统的的版本,区别: if (floor(NSFoundationVersionNumber) <= NSFound ...