480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/
C++:
class Solution {
public:
vector<double> medianSlidingWindow(vector<int>& nums, int k)
{
vector<double> res;
multiset<double> ms(nums.begin(), nums.begin() + k);
auto mid = next(ms.begin(), k / 2);
for (int i = k; ; ++i)
{
res.push_back((*mid + *prev(mid, 1 - k % 2)) / 2);
if (i == nums.size())
{
return res;
}
ms.insert(nums[i]);
if (nums[i] < *mid)
{
--mid;
}
if (nums[i - k] <= *mid)
{
++mid;
}
ms.erase(ms.lower_bound(nums[i - k]));
}
}
};
参考:http://www.cnblogs.com/grandyang/p/6620334.html
480 Sliding Window Median 滑动窗口中位数的更多相关文章
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- POJ - 2823 Sliding Window (滑动窗口入门)
An array of size n ≤ 10 6 is given to you. There is a sliding window of size kwhich is moving from t ...
- [leetcode]239. Sliding Window Maximum滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- Sliding Window(滑动窗口)
Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 58002 Accepted: 16616 Case Time Limi ...
- [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- LeetCode 480. Sliding Window Median
原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description 题目: Median is the middl ...
- POJ 2823 Sliding Window (滑动窗口的最值问题 )
Sliding Window Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 41264 Accepted: 12229 ...
- 239 Sliding Window Maximum 滑动窗口最大值
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口 k 内的数字.滑动窗口每次只向右移动一位.例如,给定 nums = [1,3,-1,-3, ...
随机推荐
- UR#34. 多项式乘法
#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+ ...
- REST RPC HTTP vs 高性能二进制协议 序列化和通信协议
edisonchou https://mp.weixin.qq.com/s/-XZXqXawR-NxJMPCeiNsmg .NET Core微服务之服务间的调用方式(REST and RPC) Edi ...
- bzoj3727: PA2014 Final Zadanie
我真是SB之神呢这么SB的题都不会 肯定是先无脑正向思考,罗列下关系式: b[1]=∑a[i]*dep[i]=∑tot[i] (i!=1) b[i]=b[fa]-tot[i]+(tot[1]-tot[ ...
- download file by python in google colab
https://stackoverflow.com/questions/15352668/download-and-decompress-gzipped-file-in-memory You need ...
- RecyclerView 局部刷新(获取viewHolder 去刷新)
RecyclerView.ViewHolder viewHolder = mRecyclerView.findViewHolderForAdapterPosition(i); if (viewHold ...
- 深入研究 Java Synchronize 和 Lock 的区别与用法
在分布式开发中,锁是线程控制的重要途径.Java为此也提供了2种锁机制,synchronized和lock.做为Java爱好者,自然少不了对比一下这2种机制,也能从中学到些分布式开发需要注意的地方. ...
- windows上搭建php环境
在Windows 7下进行PHP环境搭建,首先需要下载PHP代码包和Apache与Mysql的安装软件包. PHP版本:php-5.3.2-Win32-VC6-x86,VC9是专门为IIS定制的,VC ...
- Hackerrank: Week of Code 36
Cut a Strip 题目简述:给定$n \times m$的矩阵$a[][]$,要求选择一个$x \times 1(1 \leq x \leq k)$的(连续)子矩阵并清零后,找到最大和的(连续) ...
- jsp 验证码
<%@page import="java.awt.Graphics2D"%> <%@page import="java.util.Random" ...
- android调用第三方库——第一篇 (转载)
转自:http://blog.csdn.net/jiuyueguang/article/details/9447245 版权声明:本文为博主原创文章,未经博主允许不得转载. 0:前言: 这两天一直在研 ...