Rikka with Subset

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1440    Accepted Submission(s): 721


Problem Description
As we know, Rikka is poor at math. Yuta is worrying about this situation, so he gives Rikka some math tasks to practice. There is one of them:

Yuta has n positive A1−An and
their sum is m.
Then for each subset S of A,
Yuta calculates the sum of S. 

Now, Yuta has got 2n numbers
between [0,m].
For each i∈[0,m],
he counts the number of is
he got as Bi.

Yuta shows Rikka the array Bi and
he wants Rikka to restore A1−An.

It is too difficult for Rikka. Can you help her?  
 

Input
The first line contains a number t(1≤t≤70),
the number of the testcases. 

For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).

The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).
 

Output
For each testcase, print a single line with n numbers A1−An.

It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.
 

Sample Input

2
2 3
1 1 1 1
3 3
1 3 3 1
 

Sample Output

1 2
1 1 1

Hint

In the first sample, $A$ is $[1,2]$. $A$ has four subsets $[],[1],[2],[1,2]$ and the sums of each subset are $0,1,2,3$. So $B=[1,1,1,1]$

 

Source
 

Recommend
liuyiding   |   We have carefully selected several similar problems for you:  6095 6094 6093 6092 6091 
 

Statistic | Submit | Discuss | Note

思路:动态规划+思维

因为已知了集合B要求集合A的序列,显然空集与全集的数量都为1,所以B0和Bm都为1

集合A中1的数量就等于B1,那么B2便可以由B1推出(排列组合的思想),B3可有B2推出,以此类推,采用01背包为题解决

#include <iostream>
#include<algorithm>
#include<string.h>
#include<stdint.h>
using namespace std;
const int maxn=10005; int a[maxn],b[maxn],c[maxn],dp[maxn];
//dp[i]表示:加和为i的子集个数 int main()
{
int t;
scanf("%d",&t);
int n,m;
while(t--)
{
scanf("%d%d",&n,&m);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(c,0,sizeof(c));
memset(dp,0,sizeof(dp)); dp[0]=1;
for(int i=0;i<=m;i++)
{
scanf("%d",&b[i]);
}
int p=0,sum=0;
for(int i=1;i<=m;i++)
{
c[i]=b[i]-dp[i];//A序列中值为i的个数
for(int j=0;j<c[i];j++)
{
a[p++]=i;//对A序列赋值
for(int k=m;k>=i;k--)
{//处理成01背包问题
dp[k]+=dp[k-i];//和为k的子集个数相加去更新B序列 }
} }
for(int i=0;i<p-1;i++)
{
printf("%d ",a[i]); }
printf("%d\n",a[p-1]);
}
return 0;
}

2017杭电多校第五场Rikka with Subset的更多相关文章

  1. 2017杭电多校第五场11Rikka with Competition

    Rikka with Competition Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  2. 2017杭电多校第六场1008 Kirinriki

    传送门 Kirinriki Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  3. 2018杭电多校第五场1002(暴力DFS【数位】,剪枝)

    //never use translation#include<bits/stdc++.h>using namespace std;int k;char a[20];//储存每个数的数值i ...

  4. 2017杭电多校第六场1011Classes

    传送门 Classes Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tota ...

  5. 2017杭电多校第六场03Inversion

    传送门 Inversion Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  6. 2017杭电多校第七场1011Kolakoski

    Kolakoski Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Tota ...

  7. 2017杭电多校第七场1005Euler theorem

    Euler theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) ...

  8. hdu6356 Glad You Came 杭电多校第五场 RMQ ST表(模板)

    Glad You Came Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  9. [2019杭电多校第五场][hdu6630]permutation 2

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6630 题意为求出1-n,n个数的全排列中有多少种方案满足第一位为x,第n位为y,且相邻数字绝对值之差不 ...

随机推荐

  1. Thinkphp5.0 视图view取值

    Thinkphp5.0 视图view取值 <!-- 获取控制器传递的变量 --> <li>{$age}</li> <!-- 获取服务器的信息 --> & ...

  2. CentOS7下安装单机版RabbitMQ及权限赋予

    RabbitMQ官网rpm软件包地址:https://www.rabbitmq.com/releases/ 一.安装环境: CentOS7.erlang-19.0.4-1.el7.centos.x86 ...

  3. POJ—— 2117 Electricity

    Electricity Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5620   Accepted: 1838 Descr ...

  4. MongoDB学习day02--数据库增删改查

    (window系统,在cmd命令提示符中使用) 一.数据库使用 管理mongodb数据库:mongo,连接本地数据库,或mongo 127.0.0.1:27017,连接其他服务器:mongo  ip: ...

  5. 镜像二叉树——剑指Offer

    https://www.nowcoder.net/practice/564f4c26aa584921bc75623e48ca3011?tpId=13&tqId=11171&tPage= ...

  6. 【nginx】【转】正向代理与反向代理的区别[

    转自: http://blog.csdn.net/m13666368773/article/details/8060481 正向代理的概念 正向代理,也就是传说中的代理,他的工作原理就像一个跳板,简单 ...

  7. YII数据流程浅析

    MVC就不解释,直接上代码分析数据流程: 数据库图: 模型部分介绍: <?php /* * 前两个方法必须写 * 继承自CActiveRecord类 这个类位于 \framework\db\ar ...

  8. Python 获取新浪微博的热门话题 (API)

    Code: #!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 2014-06-27 @author: guaguastd @name: ...

  9. 使用adb在电脑和手机间传文件

    首先须要root手机. 然后,"Win + R",打开cmd窗体.以下以copy d:\1.txt到/system/文件夹为例说明. adb push source(localpa ...

  10. Codeforces Round #320 (Div. 2) [Bayan Thanks-Round] C C Problem about Polyline 数学

                                                                           C. A Problem about Polyline   ...