地址:http://acm.hdu.edu.cn/showproblem.php?pid=5768

Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

 
题意:
  就是问有多少个幸运数,然后幸运数呢,就是能被7整除的数,但是这些数可能被污染,哪些数会被污染呢,就是有n种方法会被污染,每种方法给出一个ai,一个
  pi,如果幸运数%pi等于ai就会被污染,然后给你一个区间,问这个区间有多少个没被污染的幸运数。
 
题解:
  这题一开始就知道是个中国剩余定理,然后看了多篇题解,发现要用容斥+中国剩余定理,然后发现要爆long long,必须要加上一个快速乘法=。=,然后求逆元的时候
  不能用费马小定理=。=,因为快速幂要爆long long,用快速乘法就会T(I good vegetable a),最后只有学了一波欧几里德求逆元TAT。
  先对着标程看了半天他在写啥,然后发现标程是先状态压缩,然后再容斥=。=,看标程就看了好久,我是不是没救了QAQ。
 
代码:
 #include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<cstring>
#include<queue>
#include<set>
#include<string>
#include<map>
#define inf 9223372036854775807
#define INF 9e7+5
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
typedef long long LL;
const int maxn = 1e2 + ;
const int mod = 1e9 + ;
const db eps = 1e-;
ll n, l, r, ai[maxn], pi[maxn]; int Bitcount(ll x) {
return x ? Bitcount(x >> ) + (x&1LL) : ;
} //求当前状态选择的方程的个数 ll q_mul(ll a, ll b, ll mod) {
ll ret = ;
while (b) {
if (b & ) ret = (ret + a) % mod;
b >>= ;
a = (a + a) % mod;
}
return ret;
} // 快速乘法 void Ex_Gcd(ll a, ll b, ll &x, ll &y){
ll d;
if(b==){
x=,y=;
return;
}
Ex_Gcd(b,a%b,y,x);
y-=a/b*x;
} // 这里直接抄的标程的函数。。 ll CRT(ll p[], ll a[], ll cnt) {
ll M = ;
ll res = ;
for (int i = ; i <= cnt; i++) M *= p[i];
for (int i = ; i <= cnt; i++) {
ll m = M / p[i], x, y;
Ex_Gcd(m, p[i], x, y);
res = (res + q_mul(q_mul(x, m, M), a[i], M)) % M;
}
return (res + M) % M;
} ll solve(ll x) {
ll p[maxn], m[maxn], ans = ;
p[] = , m[] = ;
if (!x) return ;
for (ll i = ; i < (1LL << n); i++) {
ll num = Bitcount(i), t = , cnt = ;
for (ll j = ; j < n; j++) {
if (i & (1LL << j)) {
p[++cnt] = pi[j];
m[cnt] = ai[j];
t *= pi[j];
}
}
ll res = CRT(p, m, cnt);
if (res > x) continue;
if (num & ) ans -= (x - res) / t + ; //容斥一下
else ans += (x - res) / t + ;
}
return ans + x / ;
} int main() {
//cin.sync_with_stdio(false);
//freopen("tt.txt", "r", stdin);
//freopen("isharp.out", "w", stdout);
int t, cas = ; cin >> t;
while (t--) {
cin >> n >> l >> r;
for (int i = ; i < n; i++)
cin >> pi[i] >> ai[i];
printf("Case #%d: %I64d\n", cas++, solve(r) - solve(l-));
}
return ;
}

HDU 5768Lucky7(多校第四场)容斥+中国剩余定理(扩展欧几里德求逆元的)+快速乘法的更多相关文章

  1. 【中国剩余定理】【容斥原理】【快速乘法】【数论】HDU 5768 Lucky7

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5768 题目大意: T组数据,求L~R中满足:1.是7的倍数,2.对n个素数有 %pi!=ai  的数 ...

  2. bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp

    LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...

  3. HDU 4635 多校第四场 1004 强联通

    我还有什么好说,还有什么好说...... 我是SBSBSBSBSBSBSBSBSBSBSBSBBSBSBSBSBSBSBSBSBS........................ 题意 思路什么的都不 ...

  4. HDU暑假多校第四场J-Let Sudoku Rotate

    一.题意 Sudoku is a logic-based, combinatorial number-placement puzzle, which is popular around the wor ...

  5. HDU 全国多校第四场 题解

    题解 A AND Minimum Spanning Tree 参考代码: #include<bits/stdc++.h> #define maxl 200010 using namespa ...

  6. 2018 HDU多校第四场赛后补题

    2018 HDU多校第四场赛后补题 自己学校出的毒瘤场..吃枣药丸 hdu中的题号是6332 - 6343. K. Expression in Memories 题意: 判断一个简化版的算术表达式是否 ...

  7. 牛客多校第四场sequence C (线段树+单调栈)

    牛客多校第四场sequence C (线段树+单调栈) 传送门:https://ac.nowcoder.com/acm/contest/884/C 题意: 求一个$\max {1 \leq l \le ...

  8. Harvest of Apples (HDU多校第四场 B) (HDU 6333 ) 莫队 + 组合数 + 逆元

    题意大致是有n个苹果,问你最多拿走m个苹果有多少种拿法.题目非常简单,就是求C(n,0)+...+C(n,m)的组合数的和,但是询问足足有1e5个,然后n,m都是1e5的范围,直接暴力的话肯定时间炸到 ...

  9. HDU How many integers can you find 容斥

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. windows上搭建php环境

    在Windows 7下进行PHP环境搭建,首先需要下载PHP代码包和Apache与Mysql的安装软件包. PHP版本:php-5.3.2-Win32-VC6-x86,VC9是专门为IIS定制的,VC ...

  2. 折半插入排序 之通俗易懂,图文+代码详解-java编程

    转自http://blog.csdn.net/nzfxx/article/details/51615439 1.特点及概念介绍 下面给大家讲解一下"二分法查找"这个java基础查找 ...

  3. nodejs实现百度实时推送

    想要加快百度收录,肯定免不了链接提交吧,当然链接提交的方式有很多种,今天来说一下百度的实时推送.. 第一次看到这post请求确实有点萌逼,我自己是做前端的对后台接触确实不多,见到的前端发送post请求 ...

  4. J20170414-ms

    ストレージ   仓库  

  5. 洛谷 - P2335 - 位图 - 简单dp

    https://www.luogu.org/problemnew/show/P2335 假如我们使用dp的话,每次求出一个点的左上方.右上方.左下方.右下方的最近的白点的距离.那么只是n²的复杂度.这 ...

  6. IOS高级开发~Runtime(二)

    #import <Foundation/Foundation.h> @interface CustomClass : NSObject { NSString *varTest1; NSSt ...

  7. python 类对象和实例对象动态添加方法

    class Person(): def __init__(self, name): self.name = name def print_name(self): print(self.name) p ...

  8. poj 2891 Strange Way to Express Integers【扩展中国剩余定理】

    扩展中国剩余定理板子 #include<iostream> #include<cstdio> using namespace std; const int N=100005; ...

  9. memcached原理及介绍

    memcached是一种缓存技术,在存储在内存中(高性能分布式内存缓存服务器).目的 : 提速.(传统的都是把数据保存在关系型数据库管理系统既RDBMS,客户端请求时会从RDBS中读取数据并在浏览器中 ...

  10. Swift typealias associatedType

    使用typealias为常用数据类型起一个别名, 一方面更容易通过别名理解该类型的用途, 另一方面还可以减少日常开发的代码量. typealias使用实例: // 网络请求常用回调闭包 typeali ...