poj 3525 求凸包的最大内切圆
| Time Limit: 5000MS | Memory Limit: 65536K | |||
| Total Submissions: 3640 | Accepted: 1683 | Special Judge | ||
Description
The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.
In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.
Input
The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
| n | ||
| x1 | y1 | |
| ⋮ | ||
| xn | yn |
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.
n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1) (1 ≤ i ≤ n − 1) and the line segment (xn,yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.
You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.
The last dataset is followed by a line containing a single zero.
Output
For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
Sample Input
4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0
Sample Output
5000.000000
494.233641
34.542948
0.353553 题目大意:求凸包的最大内切圆
分析:二分找答案,对凸包的每条边平移收缩,若半平面交不为空集,则可以存在此半径的圆。
#include<cstdio>
#include<cmath>
#include<vector>
#include<algorithm>
using namespace std; struct Point {
double x, y;
Point(double x=0, double y=0):x(x),y(y) { }
}; typedef Point Vector; Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
double Length(const Vector& A) { return sqrt(Dot(A, A)); }
Vector Normal(const Vector& A) { double L = Length(A); return Vector(-A.y/L, A.x/L); } double PolygonArea(vector<Point> p) {
int n = p.size();
double area = 0;
for(int i = 1; i < n-1; i++)
area += Cross(p[i]-p[0], p[i+1]-p[0]);
return area/2;
} // 有向直线。它的左边就是对应的半平面
struct Line {
Point P; // 直线上任意一点
Vector v; // 方向向量
double ang; // 极角,即从x正半轴旋转到向量v所需要的角(弧度)
Line() {}
Line(Point P, Vector v):P(P),v(v){ ang = atan2(v.y, v.x); }
bool operator < (const Line& L) const {
return ang < L.ang;
}
}; // 点p在有向直线L的左边(线上不算)
bool OnLeft(const Line& L, const Point& p) {
return Cross(L.v, p-L.P) > 0;
} // 二直线交点,假定交点惟一存在
Point GetLineIntersection(const Line& a, const Line& b) {
Vector u = a.P-b.P;
double t = Cross(b.v, u) / Cross(a.v, b.v);
return a.P+a.v*t;
} const double eps = 1e-6; // 半平面交主过程
vector<Point> HalfplaneIntersection(vector<Line> L) {
int n = L.size();
sort(L.begin(), L.end()); // 按极角排序
int first, last,i; // 双端队列的第一个元素和最后一个元素的下标
vector<Point> p(n); // p[i]为q[i]和q[i+1]的交点
vector<Line> q(n); // 双端队列
vector<Point> ans; // 结果
q[first=last=0] = L[0]; // 双端队列初始化为只有一个半平面L[0]
for(i = 1; i < n; i++) {
while(first < last && !OnLeft(L[i], p[last-1])) last--;
while(first < last && !OnLeft(L[i], p[first])) first++;
q[++last] = L[i];
if(fabs(Cross(q[last].v, q[last-1].v)) < eps) { // 两向量平行且同向,取内侧的一个
last--;
if(OnLeft(q[last], L[i].P)) q[last] = L[i];
}
if(first < last) p[last-1] = GetLineIntersection(q[last-1], q[last]);
}
while(first < last && !OnLeft(q[first], p[last-1])) last--; // 删除无用平面
if(last - first <= 1) return ans; // 空集
p[last] = GetLineIntersection(q[last], q[first]); // 计算首尾两个半平面的交点
// 从deque复制到输出中
for(i = first; i <= last; i++) ans.push_back(p[i]);
return ans;
} int main() {
int n;
while(scanf("%d", &n) == 1 && n)
{
vector<Vector> p, v, normal;
int i, x, y;
for(i = 0; i < n; i++) { scanf("%d%d", &x, &y); p.push_back(Point(x,y)); }
for(i = 0; i < n; i++) {
v.push_back(p[(i+1)%n]-p[i]);
normal.push_back(Normal(v[i]));
} double left = 0, right = 20000;
while(right-left > 1e-6)
{
vector<Line> L;
double mid = left+(right-left)/2;
for(i = 0; i < n; i++) L.push_back(Line(p[i]+normal[i]*mid, v[i]));
vector<Point> poly = HalfplaneIntersection(L);
if(poly.empty()) right = mid; else left = mid;
}
printf("%.6lf\n", left);
}
return 0;
}
poj 3525 求凸包的最大内切圆的更多相关文章
- POJ 2187 求凸包上最长距离
简单的旋转卡壳题目 以每一条边作为基础,找到那个最远的对踵点,计算所有对踵点的点对距离 这里求的是距离的平方,所有过程都是int即可 #include <iostream> #includ ...
- 计算几何--求凸包模板--Graham算法--poj 1113
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28157 Accepted: 9401 Description ...
- poj 1113:Wall(计算几何,求凸包周长)
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28462 Accepted: 9498 Description ...
- POJ 3348 Cows 凸包 求面积
LINK 题意:给出点集,求凸包的面积 思路:主要是求面积的考察,固定一个点顺序枚举两个点叉积求三角形面积和除2即可 /** @Date : 2017-07-19 16:07:11 * @FileNa ...
- POJ 2187 Beauty Contest【旋转卡壳求凸包直径】
链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- 简单几何(求凸包点数) POJ 1228 Grandpa's Estate
题目传送门 题意:判断一些点的凸包能否唯一确定 分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的.还有求凸包的点数<=2的情况一定不能确定. /********* ...
- POJ 1113 Wall(Graham求凸包周长)
题目链接 题意 : 求凸包周长+一个完整的圆周长. 因为走一圈,经过拐点时,所形成的扇形的内角和是360度,故一个完整的圆. 思路 : 求出凸包来,然后加上圆的周长 #include <stdi ...
- POJ 1113 Wall 凸包求周长
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26286 Accepted: 8760 Description ...
- Wall - POJ 1113(求凸包)
题目大意:给N个点,然后要修建一个围墙把所有的点都包裹起来,但是要求围墙距离所有的点的最小距离是L,求出来围墙的长度. 分析:如果没有最小距离这个条件那么很容易看出来是一个凸包,然后在加上一个最小距离 ...
随机推荐
- eclipse报错MA
今天有个总监晒了张tomcat7.0崩溃忘记怎么搞了,大家都在吐槽"一个[总监](经常水群)竟然不会这个".敲上来. Problem Occurred系列: 'Starting T ...
- webpack 使用流程
webpack loader 读文件的 脚手架 vue-cli: 自动化的小工具,帮咱们把项目的架子搭起来 -------------------------------------- 开发环境 n ...
- Mac如何让调整窗口大小更简单
在使用Mac的时候,你能把鼠标的光标悬停在任何程序的边缘,当光标自动变成箭头样式后,按住鼠标左键你将能随意拖动来改变程序窗口的大小.但是,这里有个问题,我们有时候很难控制把鼠标光标移动在正确的窗口边缘 ...
- PAT (Advanced Level) Practise - 1097. Deduplication on a Linked List (25)
http://www.patest.cn/contests/pat-a-practise/1097 Given a singly linked list L with integer keys, yo ...
- spring中常用的注解
使用注解来构造IoC容器 用注解来向Spring容器注册Bean.需要在applicationContext.xml中注册<context:component-scan base-package ...
- bootstrap历练实例:复选框或单选按钮作为输入框组的前缀或后缀
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- 移动产品设计之ios系统的导航
做道题:[不定项选择题] OS中导航设计模式有几种? A.平铺导航 B.标签导航 C.树形导航 D.模态视图导航 正确答案:A B C 讲解: 导航始终是产品设计的重头戏,往往产品设计中90%的事情就 ...
- mysqldump 备份导出数据排除某张表或多张表
可以使用--ignore-table=dbname.tablename 忽略一张表 /usr/bin/mysqldump --set-gtid-purged=OFF -h127.0.0.1 -uroo ...
- 优化mysql查询
mysql提供了一个特别的explain语句,用来分析查询语句的性能 : explain select ... 1.在所有用于where,order by,group by的列上添加索引 创建索引 添 ...
- java发送email一般步骤
java发送email一般步骤 一.引入javamail的jar包: 二.创建一个测试类,实现将要发送的邮件内容写入到计算机本地,查看是否能够将内容写入: public static void mai ...